Adoption of exotic chickens in rural areas of Ethiopia: implication for breed introduction

E.Wondmeneh, D. Tadelle, E.H, Van der Waaij and J.A.M Van Arendonk

Outline

- Background
- Objectives
- Methodology
 - Model
- Results
- Conclusion

The background

introduced since 1950
 through extension program

•Census indicates low number and poor productivity: poor adoption

•an indigenous breeding program started in 2006

The background

timely to start the breeding program, but

- reason not studied and info on similar attempts is lacking
- the information very crucial
- the fate of already distributed once needs to be known

The background

- identifying factors that affect the adoption and intensity of exotic chickens increase the probability of success
- reflect a five decades of intervention by the public extension program
- the first study on adoption and intensity of exotic chickens in rural areas of Ethiopia.

Objectives:

- to investigate the differences between adopters and non-adopter, and
- to identify factors behind the poor adoption and intensity of poultry breeds.

Study sites

Methodology:

- Participatory Rural appraisal to formulate structured questionnaire
- A two stage sampling procedure
- In the first stage:
 - purposively to select villages
- The second stage:
 - systematic random sampling to select participants.

Methodology

- Data on the descriptive statistics analysed using SPSS- version 17.0.
- probability and intensity of adoption STATA-Version 11.1.)
- The Heckman selection Model (Tobit Type II)
- Econometric model :
 - Selection equation: deciding probability
 - Outcome equation: deciding intensity

The Model: Tobit II

The model has two stages.

 In the first stage, a dichotomous variable z (being adopter or not) determines whether or not y is observed, y being observed only if z = 1(model that is estimated with some matrix of independent variable w, some coefficient a, independent and with an error term e);

$$z_i^* = w'_i a + e_i$$
 Selection equation (1)
 $z_i = 0$ if $z_i^* \le 0$;
 $z_i = 1$ if $z_i^* > 0$

The Model: Tobit II

- in the second stage,
 - the expected value of y was modelled, conditional on it being observed. So, z is a dummy variable, which is a realization of an unobserved (or latent) continuous variable z^* , having a normally distributed independent error, "e", with a mean zero and a constant variance, σ_e^2 .
- $y_i^* = x'_i \beta + u_i$ Outcome equation (2) • $y_i = y_i^*$ if $z_i = 1$
- y_i not observed if $z_i = 0$
- $(\varepsilon, u) \sim N(0, 0, \sigma_{\varepsilon}^{2}, \sigma_{u}^{2}, \rho_{\varepsilon u})$
- (ε, u) is independent of x and z

(3)

(4)

(5)

Results:

Descriptive: determine characteristics of adopters and non-adopters

Variables	type	Difference between adopters and non
Social contact	continuous	P < 0.001
income from livestock	continuous	P < 0.001
off-farm participation	dummy	P < 0.001
credit access	dummy	P < 0.001
compatibility	dummy	P < 0.001

Econometric results: model fitted data

Variable	Coef.(Std.Err.)	Prob. level	Change in prob. of adoption (dy/dx)	Coef.(Std.Err.)	Prob. level	Change in number of exotic chickens (dy/dx)
constant	2.510(2.90)	0.388	-	2.486(0.681)	0.000	-
price [@]	1.220(2.14)	0.568	0.350	0.370(0.47)	0.431	0.125
compatibilit y [@]	-0.165(2.13)	0.938	-0.059	0.010(0.42)	0.980	0.041
Input avail. [@]	-0.496(0.710)	0.484	-0.165	0.160(0.26)	0.531	0.257
education [@]	-0.067(0.470)	0.887	-0.025	-0.034(0.123)	0.780	-0.023
gender [@]	-0.196(0.426)	0.645	-0.071	-0.367(0.110)	0.001***	-0.330
age	-0.007(0.014)	0.599	-0.003	-0.004(0.004)	0.316	-0.003
Credit access [@]	0.287(0.530)	0.588	0.107	0.406(0.283)	0.151	0.353
Farm size	-0.009(0.054)	0.862	0.496	-0.025(0.011)	0.027**	-0.023
Off-farm part. [@]	1.350(0.627)	0.031**	0.022	0.364(0.390)	0.350	0.131
Social contact	0.060(0.198)	0.761	-0.008	-0.085(0.06)	0.156	-0.096
Extension visit	-0.022(0.094)	0.812	-0.383	-0.034(0.040)	0.347	-0.033
Income from Livestock	-1.030(0.445)	0.021**	-0.045	-0.512(0.120)	0.010**	-0.320
Training	-0.121(0.355)	0.733	0.010	0.073(0.093)	0.436	0.095
	For quality of life					

For quality of li

conclusion

- variables affecting the probability of and intensity of adoption known
- The study indicated important variables to consider
- The result calls for reconsidering the earlier extension scheme
 - Breed selection
- The result will be used to shape up the dissemination scheme of the breeding program
 - Gender, individuals who earn a lot from large livestock

I thank you!!

