

Carcass and colostrum quality of Angus cattle with different Myostatine-Genotypes

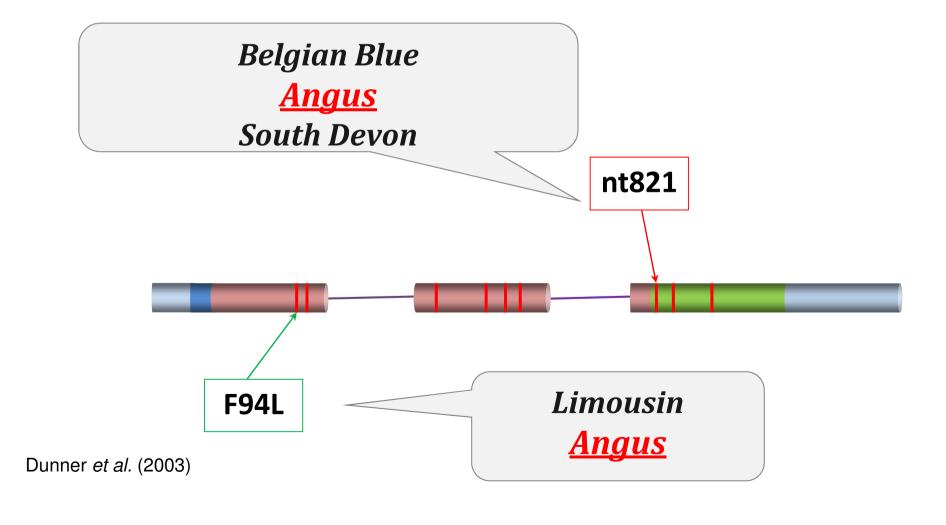
Eder, J.¹, ; Waßmuth, R.²; von Borell, E.¹; Swalve, H.H.¹

¹ Martin-Luther-University Halle-Wittenberg

² University of Applied Sciences Osnabrück

Objectives of the present study

Evaluate possible influences of different Myostatine-Genotypes with respect to:


- carcass yield and quality
- colostrum quality

in German Angus

Variants of mutations of the Myostatine-Gene

Impacts of Myostatine-Gene for fattening and slaughter

- © Casas et al. (2004): No difference between homozygous free and heterozygous animals in daily gain
- @GILL et al. (2010) and ALLAIS et al. (2010): Heterozygous animals were heavier at slaughter and had a better score for beefiness in the EUROP-System

Frequency (%) of the three Myostatine – Genotypes (nt821) of German Angus

		Double Muscling Genotype*		
n		MH+/MH+	MH+/mh-	mh-/mh-
Cows	936	78.50%	21.40%	0.10%
Bulls	106	85.80%	14.20%	-

MH+/MH+ = homozygous free genotype; MH+/mh- = heterozygous genotype; mh-/mh- = homozygous double musling genotype

Components of German Angus colostrum

Constituents of colostrum	Arithmetic mean (min – max)
Calcium	9250
(mg/kg)	(4910 - 13900)
Magnesium	1500
(mg/kg)	(967 - 2850)
Selen	0.12
(mg/kg)	(0.01 - 0.20)

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Materials and Methods

Data Collection

Data collection colostrum

- September 2009
- 24 cows from one herd in Germany

Data collection carcass

- April 2010 until August 2010
- 77 young bulls from another herd in Germany

Genotyping of the Myostatine-Gene

SNP – Genotyping (Eurofins Medigenomix GmbH®)

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Materials and Methods

Statistical model "Carcass"

$$Y_{ijklm} = \mu + D_i + S_j + H_k + b (M_{ijk} - M) + e_{ijklm}$$

Y = observation

 μ = sample mean

D = fixed effect (double muscling gene)

S = fixed effect (slaughter period)

H = fixed effect (breeding farm)

b $(M_{ijk} - \overline{M})$ = linear covariate (feeding period)

e = residual random error

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Materials and Methods

Statistical model "Colostrum"

$$Y_{ijkl} = \mu + D_i + L_j + C_k + b (E_{ijk} - E) + e_{ijkl}$$

Y = observation

 μ = sample mean

D = fixed effect (double muscling gene)

L = fixed effect (number of lactation)

C = fixed effect (body condition score)

b $(E_{iik} - E)$ = linear covariate (sampling time)

e = residual random error

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG Discussion of the results

LSMeans (SE as Index) for colostrum constituents of genotypes

	Myostatine-Genotypes		
Traits	homozygous free (n=13)	heterozygous (n=11)	
Calcium	9669	10139 ₆₅₅	
[mg/kg]	8662 552		
Magnesium	1341 ₇₈ a	1730 ₉₂ b	
[mg/kg]	134178	1730 92	

Discussion of the results

LSMeans (SE as Index) for carcass traits of genotypes

	Myostatine-Genotypes		
Traits	homozygous free (n=61)	heterozygous (n=16)	
Weight at slaughter	680.8 _{4.1} a	694.3 _{6.3} b	
[kg]	000.0 4.1	094.3 6.3	
Carcass weight	382.2 _{3.8} ^a	410.8 _{5.9} b	
[kg]	302.2 3.8	410.0 5.9	
Dressing percentage	56.1 _{0.4} ^a	59.2 _{0.6} b	
[%]	30.1 0.4	JJ.2 0.6	

a,b significant differences (p \leq 0.05)

Discussion of the results

Myostatine-Gene in German Angus Cattle, nt821(del11)

Conclusions

- About 20 % of the German Angus herdbook cows have the heterozygous myostatine-genotype
- Heterozygous cows…
 - ...show an increased Magnesium content in the colostrum
- Weterozygous young bulls ...
 - … are heavier at slaughter
 - … have an increased carcass weight
 - … show an increased dressing percentage

Interessengemeinschaft Angus

Medigenomix

Ihr Partner

Thank You

