Reference population designs affects reliability of selection for (un)genotyped animals

Marcin Pszczola^{1,2,3}, Tomasz Strabel³, Johan van Arendonk², and Mario Calus¹

¹Wageningen UR Livestock Research, Animal Breeding and Genomics Centre, The Netherlands ²Wageningen University, Animal Breeding and Genomics Centre, The Netherlands ³Poznan University of Life Sciences, Department of Genetics and Animal Breeding, Poland

In this talk:

Design of reference population & relationship to reference population affects reliability of breeding values

Average squared relationship to reference population – good reliability proxy

Genotyping selection candidates is more important

Acknowledgments

Organizers - EAAP SCHOLARSHIP

Faculty of Animal Breeding and Biology (PULS, Poland)

Koepon Stichting (Leusden, the Netherlands)

The GreenHouseMilk is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-238562. This publication represents the views of the authors, not the European Commission, and the Commission is not liable for any use that may be made of the information.

National Science Centre (Krakow, Poland); DEC-2011/01/N/NZ9/00614

Genomic selection - accuracy

Number of animals in the

reference population

Genomic selection

Traits difficult and/or expensive to measure

Methane emission

Feed intake

Data

Simulation:

Genome: 3x1M; 1SNP/0.001cM

Historic cattle population

- Reference populations:
 - Highly, moderately, lowly and randomly related

- **Small (n=2,000)**
- Cows only

	2
- A Toke	4L

Selection candidates (n=1,000)

Reference populations' structure

Relationship within reference population		Number of	
		3	\mathcal{P}
High	(HR)	5	2000
Moderate	(MR)	20	2000
Low	(LR)	40	2000
Random	(RND)	50	2000

Pedigree-based average relationship within the reference populations

Pedigree-based average relationship within the reference populations

Different groups genotyped

Scenarios

Scenarios

G matrix:

• VanRaden (2008)

$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$

• Current allele frequencies (p_i)

H matrix:

Legarra et al. (2009)

H matrix:

- A & G compatibility:
 - A & G on the same base pop.

- Wright's F-statistics (Powell et al.)
- G regressed to A
 - Bins of relationships (0-0.10, >0.10-0.25, >0.25, and >0.50)
 - Parent-offspring & diagonals not regressed

$$r^{2} = c_{ref_sel} \left[C_{ref} + I \left(\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} \right) \right]^{-1} c'_{ref_sel}$$

 $r^{2} = c_{ref_sel} \left[C_{ref} + I \left(\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} \right) \right]^{-1} c'_{ref_sel}$

Average reliabilities of selection candidates

(n=1000) across differently designed reference populations for different (un)genotyped groups

Conclusions – Accuracy is increased by:

Conclusions – Accuracy is increased by:

Thank you for your attention!

Increasing GS accuracy differently than by increasing the reference population size is (still) needed!

Marcin.Pszczola@wur.nl

