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Refine division into subgroups. More than
2 000 milk components exist1!

Decomposition of milk into its
metabolic components
Ü assess energy status of cow
Ü explore metabolic

(production) diseases (e.g.
ketosis, milk fever etc.)

Ü study heritability and mode
of inheritance of novel milk
traits

Two Approaches

detailed milk
components
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Ë metabolome to milkÊ genome to metabolites

Experimental Data

• milk sample of 1 295 Holstein cows
• first lactation between 21st–120th day
• half sibs (192 sires) on 18 farms
• genotypes at 37 180 SNPs
• pedigree with 23 819 animals
• 190 metabolites measured via GC-MS

Conclusions
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● partial least squares
Random Forest

Ü monitor some metabolites
important for milk traits or
diseases

Ê GBLUP is suitable to study genetics
of metabolic components

Ê small to intermediate level of
inheritance, mainly due to additive
genetic sources of variation

Ë Some milk traits are well predicted
from metabolite profiles

Ü identify locus-specific effects on
selected metabolites (see Melzer et
al., Session 12)

Theory

metabolite

marker-based genetics

additive dominance

polygenic effects

fixed factors

Linear mixed model (GBLUP)2 on log2-transformed metabolite
measurements with genomic (realised) and pedigree (expected)
relationship was extended to include the correlation of dominance
deviations.

Likelihood ratio tests3 and FDR-corrected P-values
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H2 per chemical group
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Results

• broad-sense heritability 0 ≤ H2 ≤ 0.70
• narrow-sense heritability 0 ≤ h2 ≤ 0.57
• 55 metabolites with significant additive genetic variation, mainly

in sugars (6), amino (10) and carboxylic (6) acids
• no metabolite with significant dominance variation at 5 % level
• ≥ 80% of phenotypic variation explained by GBLUP model (via

leave-one-out cross-validation)
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