

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

THE SHEEP SECTOR IN GREENHOUSE GAS INVENTORY IN HUNGARY

György BORKA – Tímea NÉMETH – Edina KRAUSZ – Sándor KUKOVICS

63rd Annual Meeting of EAAP

ESTABLISHED: 1896

<u>JUHINNOV PLATFORM, GHG-PROJECT</u>

AIM OF THE PROJECT: HAVE MORE EXACT DATA OF GHG EMISSIONS OF SHEEP PRODUCTION

ANALYSIS:

Hungarian national and agricultural GHG emission inventory by gas and source

DATA COLLECTION:

Survey on parameters relevant to GHG emissions of Hungarian sheep sector

METHOD DEVELOPMENT:

Using the results of survey, development of country-specific emission factors to estimate the GHG emissions of sheep sector (Basis: IPCC Tier 2 method)

JUHINNOV PLATFORM, GHG-PROJECT

CALCULATION OF EMISSIONS:

Trends of nitrous oxide (N₂O) and methane (CH₄) between 1985 and 2009, comparison the GHG emissions of cattle and sheep sectors

CONCLUSIONS, PROPOSALS:

Reduction of GHG emissions in ruminant sectors: necessity and reduction possibilities

DATA COLLECTION:

SURVEY ON PARAMETERS RELEVANT TO GHG EMISSIONS FROM SHEEP SECTOR

Purpose of animal keeping
Number of animals
 (ewes, lambs until weaning, lambs until 1 year of age, rams, other sheep)
Body mass and body mass gain
Milk yield
Nutrition
Housing
Grazing (grazing days per year, grazing hours per day)
Manure management

Field-survey in 10 farms, survey-method (questionnaire) in 75 farms, (total animal places approx. 95 000)

63rd Annual Meeting of EAAP

IMPORTANT CHARACTERISTIC PARAMETERS OF SHEEP FARMS IN HUNGARY

- Main product: lamb for slaughtering
 - (until 60-90 days of age, body mass at selling: 22 kg)
- •Average body mass of ewes: 49-75 kg
- •Nutrition (per animal per day):
 - grass 4-8 kg,
 - other feed components (ewes): hay 0.4-2.5 kg, silage 0.3-0.5 kg, concentrate 0.1-0.5 kg,

straw 0.1-0.2 kg

- •Grazing: average 200 days/ year, and 10 hours/day
- •Manure management:
 - exclusively solid manure systems
 - cleaning out 2 times per year
 - storage time 120-160 days
 - manure application in September October, incorporation usually immediately or in 1 week

63rd Annual Meeting of EAAP

<u>NATIONAL GHG EMISSIONS (in CO₂-Eq.) IN HUNGARY BETWEEN 1985 AND 2008</u> BY SECTORS (Gg year¹)

63rd Annual Meeting of EAAP

<u>METHANE (CH₄) EMISSIONS IN HUNGARY BETWEEN 1985 AND 2008 BY SECTORS</u>

<u>(Gg year¹)</u>

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>NITROUS OXIDE (N₂O) EMISSIONS IN HUNGARY BETWEEN 1985 AND 2008 BY</u> <u>SECTORS (Gg year¹)</u>

63rd Annual Meeting of EAAP

ESTABLISHED: 1896

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>GHG EMISSIONS (N₂O AND CH₄, in CO₂-Eq.) FROM AGRICULTURE IN HUNGARY</u> <u>BETWEEN 1985 AND 2008 BY SOURCE (Gg year¹)</u>

63rd Annual Meeting of EAAP

ESTABLISHED: 1896

<u>GHG EMISSIONS (N₂O AND CH₄, in CO₂-Eq.) FROM ANIMAL PRODUCTION IN HUNGARY BETWEEN 1985 AND 2008 BY ANIMAL SPECIES (Gg year¹)</u>

63rd Annual Meeting of EAAP

ESTABLISHED: 1896

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>METHANE EMISSIONS (in CO₂-Eq.) FROM ENTERIC FERMENTATION BETWEEN</u> <u>1985 AND 2008 BY ANIMAL SPECIES (Gg year¹)</u>

63rd Annual Meeting of EAAP

<u>GHG EMISSIONS (N₂O AND CH₄, in CO₂-Eq.) FROM MANURE MANAGEMENT AND <u>APPLICATION BETWEEN 1985 AND 2008 BY ANIMAL SPECIES</u> <u>(Gg year¹)</u></u>

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

ESTABLISHED: 1896

<u>GHG EMISSIONS (N₂O AND CH₄, in CO₂-Eq.) FROM SHEEP SECTOR BETWEEN 1985</u> AND 2008 BY SOURCES (Gg year¹)

THE SHEEP SECTOR IN NATIONAL GHG EMISSION INVENTORY AVERAGE OF 1985-2008 PERIOD

Total GHG 0.9% (0.6-1.3%)

METHANE (CH4)2.6% (1.7-3.6%)NITROUS OXIDE (N2O)5.1% (3.8-8.3%)

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>COMPARISON OF GHG-EMISSIONS FROM SHEEP AND CATTLE PRODUCTION IN HUNGARY IN</u> <u>AVERAGE OF 2004 – 2008 PERIOD by ANIMAL</u>

Sources / categories		Average sheep	Average cattle
All sources (enteric fermentation, manure management, soils)			
CH ₄	kg head ⁻¹ yr ⁻¹	8.2458	89.5866
N ₂ O	kg head ⁻¹ yr ⁻¹	1.1107	4.3538
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg head ⁻¹ yr ⁻¹	517.4624	3'231.0093
Enteric fermentation			
CH ₄	kg head ⁻¹ yr ⁻¹	8.0000	85.4187
N ₂ O	kg head ⁻¹ yr ⁻¹	-	-
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg head ⁻¹ yr ⁻¹	168.0000	1'793.7917
Manure management (stables and storage)			
CH ₄	kg head ⁻¹ yr ⁻¹	0.2458	4.1680
N ₂ O	kg head ⁻¹ yr ⁻¹	0.3721	1.9866
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg head ⁻¹ yr ⁻¹	120.5052	703.3779
Soils (incl. pastures)			
CH ₄	kg head ⁻¹ yr ⁻¹	-	-
N ₂ O	kg head ⁻¹ yr ⁻¹	0.7386	2.3672
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg head ⁻¹ yr ⁻¹	228.9571	733.8397

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>COMPARISON OF GHG-EMISSIONS FROM SHEEP AND CATTLE PRODUCTION IN HUNGARY IN</u> <u>AVERAGE OF 2004 – 2008 PERIOD by BODY MASS</u>

Sources / categories		Average sheep	Average cattle
All sources (enteric fermentation, manure management, soils)			
CH ₄	kg kg ⁻¹ yr ⁻¹	0.1666	0.1747
N ₂ O	kg kg ⁻¹ yr ⁻¹	0.0224	0.0085
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg kg ⁻¹ yr ⁻¹	10.4537	6.3012
Enteric fermentation			
CH ₄	kg kg ⁻¹ yr ⁻¹	0.1616	0.1666
N ₂ O	kg kg ⁻¹ yr ⁻¹	-	-
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg kg ⁻¹ yr ⁻¹	3.3939	3.4983
Manure management (stables and storage)			
CH ₄	kg kg ⁻¹ yr ⁻¹	0.0050	0.0081
N ₂ O	kg kg ⁻¹ yr ⁻¹	0.0075	0.0039
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg kg ⁻¹ yr ⁻¹	2.4344	1.3718
Soils (incl. pastures)			
CH ₄	kg kg ⁻¹ yr ⁻¹	-	-
N ₂ O	kg kg ⁻¹ yr ⁻¹	0.0149	0.0046
Total GHG (CH ₄ +N ₂ O) in CO ₂ -equivalent	kg kg ⁻¹ yr ⁻¹	4.6253	1.4312

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>NECESSARY CONDITON OF SUSTAINABLE AGRICULTURAL</u> <u>PRODUCTION IS DEVELOPMENT AND IMPLEMENTATION OF LOW-</u> <u>EMISSION PRODUCTION SYSTEMS</u>

REDUCTION OF GHG EMISSIONS FROM ANIMAL PRODUCTION IS NECESSARY

Û

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>REALISTIC MEASURES FOR REDUCTION OF METHANE (CH₄) EMISSIONS IN RUMINANT SECTOR</u>

NUTRITION

INCREASING OF CONCENTRATE AND FAT IN RATION

but: possibilities are limited (digestion physiology, increasing of concentrate feeding in ruminant sector is not practical)

MANURE MANAGEMENT

SUITABLE (LOW-EMISSION) STORAGE METHODS

but: conflicts between methane, nitrous oxide and ammonia reduction

 $(\text{\textcircled{CH}}_4 \Rightarrow \text{\texttt{N}}_2\text{\texttt{O}}\text{\textcircled{1}}, \text{\textcircled{CH}}_4 \Rightarrow \text{\texttt{NH}}_3 \text{\textcircled{1}})$

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>REALISTIC MEASURES FOR REDUCTION OF NITROUS OXIDE (N₂O) IN RUMINANT</u> SECTOR

NUTRITION

OPTIMIZATION OF PROTEIN FEEDING

but: possibilities are more limited in ruminants, especially in sheep, than in pig or poultry

MANURE MANAGEMENT

SUITABLE STORAGE AND APPLICATION METHODS (MORE LIQUID MANURE SYSTEMS)

but: conflicts between nitrous oxide, methane and nitrate reduction

 $(\bigcup N_2 O \Rightarrow CH_4 \uparrow, \bigcup N_2 O \Rightarrow nitrate \uparrow)$

GRAZING

REDUCTION OF GRAZING TIME

but: ecological, environmental protection and animal welfare conflicts

63rd Annual Meeting of EAAP

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

<u>NATIONAL GHG EMISSIONS (in CO₂-Eq.) IN HUNGARY BETWEEN 1985 AND 2008</u> BY SECTORS (Gg year¹)

63rd Annual Meeting of EAAP

ESTABLISHED: 1896

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

THE LAST QUESTION TO BE ANSWERED:

HAVING ALL OF THESE DATA KNOWN,

HOW ADEQUATE TO CONCENTRATE ON TO

• DECREASE THE GHG EMISSION OF SHEEP (AND PROBABLY CATTLE AND GOAT) SECTOR?

H-2053 Herceghalom Gesztenyés út 1. HUNGARY

THANK YOU FOR YOUR ATTENTION!

