Constraints to Efficient Protein Utilization by the Dairy Cow and the Dairy Farm

RedNex-2 EAAP-15 27 August, 2012

Glen Broderick U.S. Dairy Forage Research Center USDA-ARS Madison, Wisconsin

Maximizing Protein Efficiency

How can we Maintain Profitable Levels of Production on Low Dietary Protein?

Maximizing Protein Efficiency

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

Meet Microbial Requirements for Rumen Degraded Protein (RDP)

Replacing RDP from True Protein with RDP from NPN Reduced N-Utilization (16% CP; Solv. SBM, Treated-SBM, Urea) (Broderick & Reynal, 2009)

Amino-N Stimulates Microbial Protein Formation

Optimize Carbohydrate Fermentation in the Rumen

Effect of Carbohydrate Supplementation of Cows Grazing Perennial Ryegrass (Wales et al., 2009) 30 **Milk Yield** DMI & Milk Yield (kg/d) 25 20 **Total DMI** 15 SR = 0.6SR = 0.9**SR** = Substitution Ratio **Pasture DMI** 10 Supplement = 65% Barley, 6 0 2 30% Steam-flaked maize, 5% Molasses; 10% CP Supplement (kg/d) **Maximizing Protein Efficiency**

Effect of Carbohydrate Supplementation of Cows Grazing Perennial Ryegrass (Wales et al., 2009)

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

Production & Feeding--Top Wisconsin Herds (Shaver et al., 1998)

RHA	Fat	Protein	Dietary CP
((kg/lactation)		
14,200	505	425	19.4%
(119 cows)	(3.55%)	(3.2%)	(18.5-21.5%)
			(28% NDF)

Effect of Dietary [CP] on Intake, Yield & Urinary N (Broderick, 2003)

Production & Feeding--Top 6 Free-Stall Wisconsin Herds (Shaver & Kaiser, 2004)

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

CP Supplement & Production in Dairy Cows

(Brito & Broderick, 2007)

	CP Supplement					
Item	Urea	SSBM	CSM	CM	Prob.	
(kg/d)						
DM intake	22.1 ^c	24.2 ^b	24.7 ^{ab}	24.9 ^a	< 0.01	
Milk	32.9 ^b	40.0 ^a	40.5 ^a	41.1 ^a	< 0.01	
True protein	0.92 ^c	1.23 ^{ab}	1.18 ^b	1.27 ^a	< 0.01	
Milk-N/NI, %	24.9 ^c	30.4 ^a	28.5 ^b	30.2 ^{ab}	< 0.01	

(Lucerne & Maize Silages, High Moisture Maize, 16.5% CP)

SSBM = Solvent Soybean Meal; CSM = Cottonseed Meal; CM = Canola (Rapeseed) Meal; a-c(P < 0.05)

CP Supplement & Production in Dairy Cows

(Brito & Broderick, 2007)

CP Supplement						
Item	Urea	SSBM	CSM	CM	Prob.	
(kg/d)						
DM intake	22.1 ^c	24.2 ^b	24.7 ^{ab}	24.9 ^a	< 0.01	
Milk	32.9 ^b	40.0 ^a	40.5 ^a	41.1 ^a	< 0.01	
True protein	0.92 ^c	1.23 ^{ab}	1.18 ^b	1.27 ^a	< 0.01	
Milk-N/NI, %	24.9 ^c	30.4 ^a	28.5 ^b	30.2 ^{ab}	< 0.01	

(Lucerne & Maize Silages, High Moisture Maize, 16.5% CP)

SSBM = Solvent Soybean Meal; CSM = Cottonseed Meal; CM = Canola (Rapeseed) Meal; a-c(P < 0.05)

CP Supplement & Protein Flow from the Rumen (Brito et al., 2007)

	Diets ¹				
Item	Urea	SSBM	CSM	CM	Prob.
Microbial eff. (g NAN/kg of OMTDR)	26.3 ^b	29.0 ^a	29.7 ^a	29.5 ^a	<0.01
	g/d				
Microbial protein	2344 ^b	2706 ^a	2706 ^a	2775 ^a	0.04
Escaped protein (RUP)	538 ^c	987 ^b	1348 ^a	1150 ^{ab}	<0.01
Total protein	2882 ^c	3693 ^b	405 4 ^a	3925 ^{ab}	<0.01

SSBM = Solvent Soybean Meal; CSM = Cottonseed Meal; CM = Canola (Rapeseed) Meal; a-c(P < 0.05)

Maximizing Protein Efficiency

Lys & Met Contents of Different Proteins (NRC, 2001)

Item	Cow's	Bacterial	Solvent	Cottonseed	Canola
	Milk	Protein	SBM	meal	meal
			(% of EAA)	
Lys	16.0	15.8	13.9	<u>9.7</u>	13.2
Met	5.5	5.2	<u>3.2</u>	3.7	4.4
Lys:Met	2.9	3.0	4.4	2.6	3.0
His	5.5	4.0	6.1	6.6	6.6

Greater Milk Protein Yield on Canola/Rapeseed due to Better EAA Pattern

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- 3. Feed Rumen-Undegraded Protein with Complementary AA Pattern
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

Effect on Production & Efficiency of Lowering SBM-CP, Adding RP-Met

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

Effect of Lowering CP & Increasing RUI			
	Normal	RUP/RP-Met	
Ingredient	17.5% CP	14.0% CP	
	(% of DM)		
Lucerne silage	25	10	
Maize silage	35	50	
High moisture maize	24.3	25.2	
Solvent SBM	13.3	0	
Expeller (heated) SBM	0	<u>12.4</u>	
<u>Protected-Met (Mepron,</u> SmartAmineM, MetaSmart)	0	0.06 (Lys/Met = 3.0)	

Effect of Lowering CP & Increasing RUP*

	Normal	RUP/RP-Met
Item	17.5% CP	14% CP
MP, kg/d	2.41	2.27
NE _L -ECM, kg/d	38	38
MP-Milk, kg/d	41	41
Milk-N/NI, %	28	35
Manure-N/NI, %	72	65
Manure-N, kg/Lact.	154	111

*Estimated using the NorFor (2011) Model (DMI = 25 kg/d)

NorFor—Decline in MP Efficiency for Milk Protein with Increasing MP Supply

Maximizing Protein Efficiency

- **1. Optimize Microbial Protein in the Rumen**
- 2. Feed Only the Crude Protein Needed
- **3. Feed Rumen-Undegraded Protein with Complementary AA Pattern**
- 4. Supplementation with Protected EAA
- 5. Lose a Little Production/Maximize Efficiency
- 6. What Works on the Whole Farm?

Farm-Gate N Surplus vs. Milk/ha (Beukes et al., 2012)

Farm-Gate N Surplus vs. Milk/ha (Beukes et al., 2012)

Strategies to Reduce Farm-Gate N-Surplus/kg Milk (Kohn et al., 1998; Spears et al., 2003)

- 1. Improving Milk-N/N-Intake Most Effective
- 2. Improving Crop N-Utilization (e.g., Availability of Manure-N to Crops)
- 3. Manure N Storage Efficiency

MUN & N-Efficiency (MTT Data)

NH₃ Emission & MUN (Powell et al., 2011)

Maximizing Protein Efficiency

Summary & Conclusions

- 1. <u>Optimize</u> Microbial Protein
- 2. Balanced Diets Can be Reduced to ≤16.5% CP
- 3. Feed RUP With Complementary AA Patterns
- 4. Supplementation with RP-AA may be Useful
- 5. Lower CP Diets may Improve MP-Efficiency
- 6. Strategies that Improve N-Efficiency in the Cow Improve N-Efficiency of the Dairy Farm

