Comparison of genomic evaluation in Lacaune dairy sheep using single or multiple step GBLUP

G. Baloche (\*), H. Larroque, J.M. Astruc, C. Robert-Granié, A. Legarra, F. Barillet

(\*) corresponding author: guillaume.baloche@toulouse.inra.fr

INRA, UR 631, SAGA 31326 Castanet-Tolosan, France

## Turning into genomic breeding scheme

- Apply early and accurate selection/strong selection intensity on « Sire to Son » path
- Accounting for pre-selection of candidates required (Patry, 2011)
- Either multiple-step or single-step genomic predictions to get GEBV



- Description of the analysis of the analysis
- To compare their ability to predict genetic merit
- Computation tested on 4 traits : milk yield, protein and fat content and somatic cell count



Available Data : Genotypes and phenotypes

□ 2,868 genotyped rams with 41,501 SNPs

- Rams genotyped using the OVINESNP50 illumina chip
- Phenotypes extracted from official French ovine evaluation
  - Full data from 2011 evaluation (4,341,830 lactations)
  - Reduced data from 2007 evaluation (3,738,475 lactations)
  - DYD weighted by EDC(repartition of daughters accross flocks)
  - Ewes performances

## Composition of datasets

|                  | Full             | data                  | Learni           | ng rams               | Candidates<br>rams |  |
|------------------|------------------|-----------------------|------------------|-----------------------|--------------------|--|
|                  | Rams with<br>DYD | Genotyped<br>with DYD | Rams with<br>DYD | Genotyped<br>with DYD |                    |  |
| # of rams        | 9,340            | 2,868                 | 7,587            | 1,593                 | 595                |  |
| Year of<br>birth | 1990-<br>2009    | 1998-<br>2009         | 1990-<br>2005    | 1998-2005             | 2008-2009          |  |

## H<sup>2</sup>, EDC

|                 | H²   | EDC Learning<br>Rams | EDC<br>Candidates<br>Rams |  |  |
|-----------------|------|----------------------|---------------------------|--|--|
| Milk yield      | 0.3  | 103                  | 45                        |  |  |
| Fat Content     | 0.35 | 83                   | 44                        |  |  |
| Protein Content | 0.45 | 83                   | 44                        |  |  |
| SCS             | 0.13 | 94                   | 45                        |  |  |

#### Method of computation : G-BLUP(F90)

- Computation of a scaled genomic matrix:
  - Tuned as Vitezica et al., 2011 (Fst adjustment)
- Blended with the Numerator relationship Matrix:
- W=0.95, assuming 5% of total genetic variance due to polygenic effects

H matrix input in BLUP

$$G = \frac{Z'Z}{2\sum p_i(1-p_i)}$$

$$G_w = w \times G + (1 - w) \times A_{22}$$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}_{w}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

## MS vs SS GBLUP

□ Y=DYD weighted by EDC □ Y=Ewes performances

□ Y=µ+ram+e

- $\Box$  Y=cg + pe + animal + e
  - Cg=contemporary group
  - Pe=permanent environment

Only rams included in evaluation

Entire population included in evaluation

Output DGV

Output GEBV

#### Validation on candidate rams

Regression of DYD 2011 to DGV or GEBV

$$R^2_{interbull} = R^2(1 + k/EDC)$$
 $k = (4 - h^2)/h^2$ 

- □ Expected prediction bias (b1) ~ 1
- Comparison of R<sup>2</sup><sub>interbull</sub> and b1 between methods

### Time of computation

- Most computing time devoted to build and inverse matrix in both cases
- Faster convergence with MS-GBLUP related to the size of the Mixed Model Equations (\*17 for SS-GBLUP)

Inability to obtain standard error from SS-GBLUP
 Too large system of equations

## Results of regression

|          | Milk |      | Fat  |      | Protein |                |  | SCS  |                |  |
|----------|------|------|------|------|---------|----------------|--|------|----------------|--|
|          | b1   | R²   | b1   | R²   | b1      | R <sup>2</sup> |  | b1   | R <sup>2</sup> |  |
| PA       | 0.63 | 0.07 | 1.1  | 0.27 | 0.85    | 0.25           |  | 0.81 | 0.11           |  |
| MS-GBLUP | 0.70 | 0.15 | 1.0  | 0.34 | 0.86    | 0.32           |  | 0.74 | 0.20           |  |
| SS-GBLUP | 0.75 | 0.18 | 0.93 | 0.41 | 0.90    | 0.42           |  | 0.73 | 0.20           |  |

### Performance of SS-GBLUP

Gain of 10-30% accuracy of genomic predictions over PA

□ Inflation of predictions for most traits (b1 < 1)

SS-GBLUP slightly outperforms MS-GBLUP in terms of inflation and R<sup>2</sup>

#### Conclusion

SS-GBLUP more efficient than MS-GBLUP

- No differences in global (EDC,DYD vs direct computation) time of computation for EBV
- Advantage of accounting for pre-selection of candidates
- Approximation required to compute reliability in SS-GBLUP
- Correction of inflation?

# Acknowlegements

- financial support provided by
  - ANR and ApisGene (SheepSNPQTL project) managed by INRA

- and FUI, Midi-Pyrénées Region, Aveyron & Tarn departements, and Rodez town (Roquefort'in project) managed by Confédération Générale de Roquefort.

- technical cooperation/support from
  - genotyping platform Labogena, Jouy-en-Josas, France
  - computing facilities of CTIG, Jouy-en-Josas, France
- collaboration with the 7 partners of Roquefort'in project
- P. Boulenc, G. Frégeat, B. Giral-Viala, P. Guibert and P. Panis from the Lacaune Breeding organisation and companies.