Compatibility of pedigree-based and marker-based relationships for single-step genomic prediction

Ole F. Christensen

Aarhus University, Center for Quantitative Genetics and Genomics

EAAP 2012, Bratislava

Single-step genetic evaluation

 Combines phenotypes, genomic and pedigree information using a combined relationship matrix (Misztal, Legarra, Aguilar + coworkers, Christensen and Lund).

 $\hfill\square$ Inverse of this matrix

$$H^{-1} = \begin{bmatrix} G^{-1} - A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} + A^{-1}$$

 \square A_{11} and G need to be "compatible".

 Aim here: Provide explanation; Show a possible way to handle it.

The idea behind single-step methods

 \Box Two types of data: phenotypes y and markers m (-1, 0, 1)

 \Box Some animals genotyped (m^{obs}) but others are not (m^{miss}) .

 $\hfill\square$ This is a "missing data problem" !

 \Box A model is specified for the "full data": $f(y, m^{obs}, m^{miss})$

□ Marginalisation:

$$f(y, m^{obs}) = \int f(y, m^{obs}, m^{miss}) dm^{miss}$$

 \Box $f(y, m^{obs})$ should be used for inference.

The model behind single-step methods

 \Box Phenotypes conditional on all markers m:

 $y = \mu + a + e$

where $a \sim N(0, \sigma_a^2 G(m))$ with

$$G(m) = \sum_{j} (m_j - (2\rho_j - 1))(m_j - (2\rho_j - 1))^T / s$$

and ρ_j 's are allele frequencies.

 \Box Markers: $m_j \sim N((2\rho_j - 1)1, v_j A)$

The model behind single-step methods

By marginalisation (integrating m^{miss})

 \Box Phenotypes conditional on observed markers m^{obs} :

$$y = \mu + a + e$$

where $\operatorname{Var}(a) = \sigma_a^2 H$ with

$$H^{-1} = \begin{bmatrix} G(m^{obs})^{-1} - A_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix} + A^{-1}$$

and

$$G(m^{obs}) = \sum_{j} (m_j^{obs} - (2\rho_j - 1))(m_j^{obs} - (2\rho_j - 1))^T / s$$

 \Box Observed markers: $m_j^{obs} \sim N((2\rho_j - 1)1, v_j A_{11})$

Compatibility issue

- $\Box \ G(m^{obs})$ and A_{11} need to be "compatible"
- \Box Allele frequencies ρ_j and scaling $s = \sum_j v_j$ used to make compatible.
- □ log-Likelihood for parameter estimation:

$$\ell_{y,m^{obs}}(\sigma_{a}^{2},\sigma_{e}^{2},\rho,s) = \ell_{y|m^{obs}}(\sigma_{a}^{2},\sigma_{e}^{2},\rho,s) + \ell_{m^{obs}}(\rho,v)$$

- □ Allele frequencies ρ enter into both terms !, but maximising $\ell_{y,m^{obs}}$ numerically is not feasible computationally.
- \Box Various adjustments of $G(m^{obs})$ used in practice.

Alternative approach: adjusting A instead

 \Box Phenotypes conditional on observed markers m^{obs} :

$$y = \mu + a + e$$

where $\operatorname{Var}(a) = \sigma_a^2 \tilde{H}$ with

$$\tilde{H}^{-1} = \begin{bmatrix} \tilde{G} - (\tilde{A}_{11}(\alpha))^{-1} & 0 \\ 0 & 0 \end{bmatrix} + (\tilde{A}(\alpha))^{-1}$$

with

$$\tilde{G} = \sum_{j} (m_{j}^{obs}) (m_{j}^{obs})^{T} / \tilde{s}$$

 \Box Observed markers: $m_j^{obs} \sim N(0, (\tilde{s}/p)\tilde{A}_{11}(\alpha))$

Relationship matrix $\tilde{A}(\alpha)$

- □ Founders in the pedigree are related (coefficient= α) and inbreed (coefficient= $\alpha/2$).
- \Box $\tilde{A}(\alpha)$ is defined recursively in the usual way.

 \Box Inverse: $\left[(\tilde{A}_{\alpha}) \right]$

$$\tilde{A}^{-1} = (T^{-1})^{\mathrm{T}} \begin{bmatrix} (\tilde{A}_0)^{-1} & 0\\ 0 & \tilde{D}^{-1} \end{bmatrix} T^{-1}.$$

 \Box Colleau algorithm for computing $A_{11}(\alpha)$ also exist.

 $\hfill\square$ Fast computing procedure still exists !

Compatibility issue when adjusting \boldsymbol{A}

 $\Box~\tilde{G}=\sum_{j}(m_{j}^{obs})(m_{j}^{obs})^{T}/\tilde{s}$ and $\tilde{A}_{11}(\alpha)$ need to be "compatible"

- \Box Two parameters, α and scaling parameter \tilde{s} used to make compatible.
- □ log-Likelihood for parameter estimation:

$$\ell_{y,m^{obs}}(\sigma_a^2,\sigma_e^2,\alpha,\tilde{s}) = \ell_{y|m^{obs}}(\sigma_a^2,\sigma_e^2,\alpha,\tilde{s}) + \ell_{m^{obs}}(\alpha,\tilde{s})$$

□ Parameters α and \tilde{s} enter into both terms, and maximising $\ell_{y,m^{obs}}$ numerically is computationally feasible.

Conclusion

 \Box Compatibility of G and A: The meaning is that certain parameters should be fitted to data (in theory both phenotypes and observed markers).

 \Box An approach where A contains parameter(s) provides an interesting alternative.