

Genomic prediction within and between dairy cattle breeds with an imputed high density marker panel

Malena Erbe¹, B.J. Hayes²³⁴, P.J. Bowman²³, H. Simianer¹ and M.E. Goddard²³⁵

¹Animal Breeding and Genetics Group, Georg-August-University Göttingen

² Biosciences Research Division, Department of Primary Industries, Victoria

³ Dairy Future Cooperative Research Centre, Victoria

⁴ La Trobe University, Bundoora

⁵ Faculty of Land and Food Resources, University of Melbourne

EAAP 2012 - Malena Erbe

- size of reference set → influence on accuracy of genomic prediction
- large reference set → challenging for small breeds
- alternative: multi-breed reference sets
 - → requirements: QTL segregating in all breeds

- consistent associations across breeds

• results from 50K data: only limited or no increase in accuracy (Hayes et. al., 2009; Pryce et al., 2011)

- now: 777K data available (Illumina Bovine High Density (HD) chip)
- Hypothesis 1:

accuracy of genomic prediction will increase within breed due to a better LD structure

• Hypothesis 2:

accuracy of genomic prediction will increase for multibreed references due to more persistent phases across breeds

- 2257 Australian Holstein and 540 Australian Jersey bulls
- phenotypes: DTDs for milk yield, fat yield and protein yield
- genotyped for 50K Illumina SNP Chip
 - → after quality control: 39'745 SNPs
- imputed for 777K Illumina SNP Chip using Beagle (Browning & Browning 2009)
 - → after quality control: 624'213 SNPs

- different methods available:
 - GBLUP: assuming same variance for each SNP
 - Bayes A/B/... : allowing different variances for SNPs
- → BayesR: SNP effects from different normal distributions which have different variances
- performed well in our datasets → comparable with or in many cases better than GBLUP

$$\mathbf{y} = \mathbf{1}_n \boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{g} + \mathbf{e}$$

- **u**: vector of polygenic effects ($\mathbf{u} \sim N(0, \mathbf{A}\sigma_u^2)$)
- W: matrix of genotypes
- **g**: vector of SNP effects ($g_i \sim N(0, \sigma_{g_i}^2)$)

$$\sigma_{g_i}^2 = \begin{cases} 0 \text{ with probability } p_1 \\ 0.0001 \cdot \sigma_a^2 \text{ with probability } p_2 \\ 0.001 \cdot \sigma_a^2 \text{ with probability } p_3 \\ 0.01 \cdot \sigma_a^2 \text{ with probability } p_4 \end{cases}$$

• **GBV of animal j:** $GBV_j = \hat{u}_j + \mathbf{w}_j \hat{\mathbf{g}}$

$$\mathbf{y} = \mathbf{1}_n \boldsymbol{\mu} + \mathbf{Z}\mathbf{u} + \mathbf{W}\mathbf{g} + \mathbf{e}$$

- **u**: vector of polygenic effects ($\mathbf{u} \sim N(0, \mathbf{A}\sigma_u^2)$)
- W: matrix of genotypes
- **g**: vector of SNP effects ($g_i \sim N(0, \sigma_{g_i}^2)$)

 $\sigma_{g_{i}}^{2} = \begin{cases} 0 \text{ with probability } p_{1} \\ 0.0001 \cdot \sigma_{a}^{2} \text{ with probability } p_{2} \\ 0.001 \cdot \sigma_{a}^{2} \text{ with probability } p_{3} \\ 0.01 \cdot \sigma_{a}^{2} \text{ with probability } p_{4} \end{cases}$

• **GBV of animal j:** $GBV_j = \hat{u}_j + \mathbf{w}_j \hat{\mathbf{g}}$

sampled from Dirichlet distribution

Scenario	Validation	Reference
Holstein	360 youngest bulls	remaining 1897 bulls
Jersey	86 youngest bulls	remaining 454 bulls

Scenario	Validation	Reference
Holstein	360 youngest bulls	remaining 1897 bulls
Jersey	86 youngest bulls	remaining 454 bulls

Purebred reference set

	Scenario	Validation	Reference
	Holstein	360 youngest bulls	remaining 1897 bulls
	Jersey	86 youngest bulls	remaining 454 bulls
$\left(\right)$	Combined	360 HF + 86 Jersey bulls	1897+454 = 2351 bulls

Multibreed reference set

Chip	Reference	Validation	Protein	Fat	Milk
50K	Holstein	Holstein	0.55	0.64	0.62
HD	Holstein	Holstein	0.57	0.65	0.63
50K	Jersey	Jersey	0.42	0.48	0.49
HD	Jersey	Jersey	0.41	0.46	0.48

	Chip	Reference	Validation	Protein	Fat	Milk
(50K	Holstein	Holstein	0.55	0.64	0.62
	50K	Combined	Holstein	0.56	0.65	0.61
	HD	Holstein	Holstein	0.57	0.65	0.63
	HD	Combined	Holstein	0.57	0.66	0.62

Chip	Reference	Validation	Protein	Fat	Milk
50K	Holstein	Holstein	0.55	0.64	0.62
50K	Combined	Holstein	0.56	0.65	0.61
HD	Holstein	Holstein	0.57	0.65	0.63
HD	Combined	Holstein	0.57	0.66	0.62

Chip	Reference	Validation	Protein	Fat	Milk
50K	Jersey	Jersey	0.42	0.48	0.49
50K	Combined	Jersey	0.43	0.49	0.45
HD	Jersey	Jersey	0.41	0.46	0.48
HD	Combined	Jersey	0.46	0.49	0.51

Chip	Reference	Validation	Protein	Fat	Milk
50K	Jersey	Jersey	0.42	0.48	0.49
50K	Combined	Jersey	0.43	0.49	0.45
HD	Jersey	Jersey	0.41	0.46	0.48
HD	Combined	Jersey	0.46	0.49	0.51

How many SNPs were in the different distributions?

(calculated as mean prop. of SNPs in the distribution x total number of SNPs)

e.g. for protein yield

Distribution (Variance)	Combined, 50K	Combined, HD
1st $(0\sigma_a^2)$	34880	619650
2nd (0.0001 σ_a^2)	4820	4478
3rd (0.001 σ_{a}^{2})	36	77
4th $(0.01\sigma_{a}^{2})$	8	8

using 777K instead of 50K

Hypothesis 1 (accuracy 1 within breed)?

→ only little support, no significant increase

Hypothesis 2 (accuracy 1 in multi-breed situation)?

➔ only slight increase in accuracy

using 777K instead of 50K

Hypothesis 1 (accuracy within breed)?

➔ only little support, no significant increase

➔ only slight increase in accuracy

Why? \rightarrow low N_e in modern cattle \rightarrow enough LD even with 50K

using 777K instead of 50K

- Hypothesis 1 (accuracy within breed)?
 - ➔ only little support, no significant increase
- Hypothesis 2 (accuracy ▲ in multi-breed situation)?
 - ➔ only slight increase in accuracy
- Why? \rightarrow low N_e in modern cattle \rightarrow enough LD even with 50K
 - → breeds not close enough even for HD chip

using 777K instead of 50K

- Hypothesis 1 (accuracy within breed)?
 - ➔ only little support, no significant increase
- - ➔ only slight increase in accuracy
- Why? \rightarrow low N_e in modern cattle \rightarrow enough LD even with 50K
 - → breeds not close enough even for HD chip
 - \rightarrow Jersey data set small \rightarrow estimation errors,

worse imputation accuracy

using 777K instead of 50K

- Hypothesis 1 (accuracy within breed)?
 - ➔ only little support, no significant increase

➔ only slight increase in accuracy

- Why? \rightarrow low N_e in modern cattle \rightarrow enough LD even with 50K
 - → breeds not close enough even for HD chip
 - \rightarrow Jersey data set small \rightarrow estimation errors,

worse imputation accuracy

→ still unaccounted genetic variance → MAF

28.08.2012

This research was funded by the German Federal Ministry of Education and Research within the AgroClustEr "Synbreed – Synergistic plant and animal breeding" (Funding ID: 0315528C).

28.08.2012