

Planning the allocation of production intensity for reconciling livestock production and biodiversity

a model-based scenario approach

Félix Teillard and Muriel Tichit

Introduction – Agriculture and biodiversity

Introduction – Agriculture and biodiversity

Introduction – Consequences of intensification

Introduction – Policies and intensity allocation

Current agricultural intensity:

how to adjust its allocation to favor production and biodiv.?

- Current policies: random uptake, debated efficiency
- Targeting could be an efficiency lever

 \rightarrow what targeting?

Objective

Develop a model to evaluate the production and biodiversity perf. of several intensity allocations and scenarios

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

- What optimal intensity allocation can overcome this trade-off?
- What role for the intensity of livestock production?

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Methods – Case study

2006 Data. Teillard 2012 (AEE 149, 135-143)

Decision variable

• Intensity: Input Cost/ha ("IC/ha", in €/ha)

Performance criteria

- Production: volume of product/ha
- Biodiversity: community of common farmland birds (22 species)

- France scale
- Small Agricultural Regions resolution ("SARs", mean width = 22.4 km)
- Production types: cereal/industrial crops, beef/dairy cattle, mixed crop-cattle

Methods – Calibrations

Strong relationship between intensity (IC/ha) and production

	n	F	P-value	% Deviance
Crops	1805	137.64	$< 0.001^{***}$	19
Bovine dairy	948	509.76	$< 0.001^{***}$	52
Bovine meat	570	39.28	$< 0.001^{***}$	12
Mixed crop-cattle	547	163.93	$< 0.001^{***}$	37

Methods – Calibrations

Effect of intensity on the composition of the bird community... ...strengthened by the spatial aggregation of intensity

	n	F	P-value	% Deviance
Intensity	330	59.49	$< 0.001^{***}$	18
Aggregation (intercept)	193/137	-5.39	$< 0.001^{***}$	6
Aggregation (slope)	193/137	5.99	$< 0.001^{***}$	7

Methods – Conceptual model

Optimizing the intensity allocation, 3 steps

3 intensity evolution scenarios Intensification, Extensification, Reallocation

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Results – Trade-off among allocations

Optimal allocations improve the trade-off, and reveal win-no lose solutions

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Results – The optimal allocations

What are the properties of the optimal allocations?

 \rightarrow Optimal allocations corresponds to targeted intensity changes

- Small changes in many SARs
- Large changes in fewer SARs
- Promote intensity aggregation
- Promote intensity heterogeneity
- Spare many extensive SARs
- Spare many extensive SARs

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Results – The role of livestock farming

Intensity modification of livestock dominated SARs

- \rightarrow Less efficient intensification and reallocation
- \rightarrow Still efficient extensification

Results – The role of livestock farming

Intensity modification of livestock dominated SARs

- \rightarrow Less efficient intensification and reallocation
- \rightarrow Still efficient extensification

Livestock dominated SARs

Results – The role of livestock farming

Intensity modification of livestock dominated SARs

• Low increase in production: livestock dominated SARs represent less area

Outline

Introduction

Methods

Results

• What is the trade-off between production and biodiversity among allocations and scenarios?

• What optimal intensity allocation can overcome this trade-off?

• What role for the intensity of livestock production?

Discussion – Implications

- Policy implications
- \rightarrow Targeted intensity changes are more efficient
- \rightarrow Livestock production is essential to biodiversity objectives
- \rightarrow Opposite targeting is necessary for:

 $\begin{cases}
\max Biodiv \\
\min Production \ loss
\end{cases}$

Promote large, homogeneous clusters of extensive SARs

 $\begin{array}{l} \max Production \\ \min Biodiversity \ harm \end{array}$

Concentrate intensity in certain SARs and promote heterogeneity

Discussion – Limitations

• Factors influencing the correlations

- * Input prices
- * Input categories
- * Input products

• Generalization restriction to other taxa

Discussion – Perspectives

• Accounting for other environmental criteria

Segregating objectives was partially possible for biodiversity, what about other criteria?

• Quantifying ecosystem services

Agricultural production

email: teillard@agroparistech.fr

Funding 2009-2012: FarmBird Project "Coviability models of FARMing and BIRD biodiversity"