

Grazing behavior and metabolic profile of 2 Holstein strains in an organic full-time grazing system

S. Thannerab, F. Schoria, R. M. Bruckmaierb, F. Dohme-Meiera

^aResearch Station Agroscope Liebefeld-Posieux ALP-Haras, Tioleyre 4, 1725 Posieux, Switzerland ^bVeterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland

EAAP 63rd Annual Meeting 2012, Bratislava, Slovakia

Introduction

Situation in Switzerland:

- Selection of dairy cow genetics focus mainly on milk yield per cow
- Milk production of Holstein cows is constantly increasing (www.holstein.ch)
- 71% of agricultural area represents grassland

Swiss Federal Statistical Office, 2011

- The part of organic agricultural land is growing
- Price for concentrate is high

Introduction

- What characteristics does a dairy cow need on a full-time pasture?
 - Convert available biomass to a high amount of high quality milk
 - Able to adapt to short term feed restrictions
- New Zealand Holstein cows:
 - Well adapted to fulltime grazing systems
 - Genetics: reduced body weight, increase in feed efficiency, precocity, fertility and health (Shook, 2006; Miglior, 2005)
 - Milk yield per ha grassland

Are there differences in the suitability of Swiss and New Zealand Holstein cows for an organic full-time pasture system?

Materials and methods

- balanced complete block design.
- Animals: 2 strains:
 - 12 Farm-bred "Swiss" Holstein cows (H_{CH})
 - 12 New Zealand Holstein cows (H_{NZ})
 - pairs of cows according to no. of lactation, days since calving and age for primiparous cows
 - Characteristics of experimental animals:

Item	Cow strain		SE	Effect of Cow Strain	
	H _{CH}	H _{NZ}		(P-value)	
Days in lactation	123	123	4.4	0.89	
BW (kg)	587	546	13.0	0.01	
BCS	2.57	2.85	0.05	<0.01	
Milk yield (kg/d)	22	21	1.03	0.3	

BW = body weight, BCS = body condition score

After an adaptation period every cow completed 1 week of sampling period.

Materials and methods

Grazing management

Organic farm in Switzerland (824 m.a.s.l.)

Rotational full-time grazing system without concentrate supplementation

Grass intake

Intake of each cow was estimated during 1 week n-alkane double indicator technique (Mayes et al., 1986)

 Milk yield was recorded twice daily and milk composition was analyzed 3 times per sampling period.

Materials and methods

- Grazing behavior of each cow was recorded on 3 consecutive d over 24h
 automatic jaw movement recorder with pressure sensor (Nydegger, 2011)
- Physical activity of each cow was recorded over 72h, simultaneously with the grazing behavior
 IceTagTM pedometer (IceRobotics Ltd., Edinburgh, UK)
- **Blood samples** of each cow were taken on 3 consecutive days at 7h, 12h and 17h by puncture of the vena jugularis
- Statistical analyzes were done following linear mixed models.

Grass intake, milk: results

ltem	Cow strain		SE	Effect of Cow Strain	
	H _{CH}	H _{NZ}		(P-value)	
ECM (kg/d)	20.1	20.2	0.87	0.90	
ECM/BW ^{0.75} (kg/kg)	17.0	17.7	0.63	0.33	
ECM/Grass intake (kg/kg DM)	2.09	2.14	0.12	0.69	
Grass intake per cow (kg of DM/d)	9.98	9.54	0.28	0.27	
Grass intake/BW ^{0.75} (kg/100kg)	8.40	8.51	0.22	0.73	
Fat (%)	3.69	4.10	0.16	0.05	
Protein (%)	2.92	3.20	0.05	<0.01	
Lactose (%)	4.57	4.56	0.04	0.86	
FPQ	1.03	1.05	0.02	0.51	
Urea (ppm)	166	175	7.16	0.38	

ECM = energy corrected milk, BW^{0.75} = metabolic body weight, DM = dry matter, FPQ = quotient of fat to protein

Grazing behavior: results

Physical activity: results

Metabolic profile: results

Item	H _{CH}	H _{NZ}	SE	P - value
BHBA mmol/l	0.87	0.84	0.04	0.61
NEFA mmol/l	0.10	0.09	0.01	0.35
Glucose mmol/l	3.18	3.15	0.05	0.66
Cholesterol mmol/l	5.83	6.10	0.30	0.68
Triacylglycerides mmol/l	0.31	0.33	0.01	0.40
Urea mmol/l	2.96	3.18	0.11	0.19
Total protein g/l	75.8	73.0	1.49	0.18
Insulin µU/ml	11.6	11.8	1.40	0.90
IGF-1 ng/ml	84.4	106.0	7.54	0.05
T3 nmol/l	1.40	1.67	0.09	0.01
T4 nmol/l	43.1	46.9	2.29	0.23

BHBA = β -hydroxybutyrate, NEFA = non-esterified fatty acids, IGF-1 = insulin -like growth factor-1, T3 = 3,5,3 'triiodothyronine , T4 = Thyroxin

Conclusions

- H_{NZ} behave slightly differently compared to H_{CH}
 - longer rumination time
 - more No. of boli
- No differences in
 - physical activity
 - intake per kg of BW^{0.75} and feed efficiency
 - metabolic load
- H_{NZ} seem to compensate feed restriction better than H_{CH} but could not use that advantage for increased feed efficiency.

No differences in the suitability of Swiss and New Zealand Holstein cows for use in organic full-time pasture systems in this short-term study were found.

Thank you for your attention!

