Methane emissions and rumen fermentation in beef heifers differing in phenotypic residual feed intake

C. Fitzsimons^{1,3}, D.A. Kenny¹, M. Deighton², A.G. Fahey³ and M. McGee¹

Animal and Grassland Research and Innovation Centre, Teagasc, Grange¹, Co. Meath, Ireland, Moorepark², Co. Cork, Ireland, ³School of Agriculture and Food Science, University College Dublin, Ireland

Introduction

- Enteric CH₄ production accounts for a significant proportion of anthropogenic CH₄ (Crosson *et al.*, 2011)
- CH₄ mitigation strategies:
 - Some affect animal performance / no lasting effect
 - Possibly, via selection of feed efficient animals by improved residual feed intake (RFI) (Hegarty *et al.*, 2007)
- RFI = animal's actual intake predicted intake

Adjusted for maintenance + growth

- Negative values = efficient
- Positive values = inefficient

Introduction

- Some evidence that low RFI cattle produce less CH₄ than high RFI cattle
- Feed efficient cattle produced,
 - 25% less CH₄ on high conc. diets (Hegarty *et al.*, 2007)
 - 28% less CH₄ on high conc. diets (Nkrumah *et al.*, 2006)
 - 27% less CH₄ on high quality pasture but NO difference on low quality pasture (Jones *et al.*, 2011)

Objective of this study

 Characterise productivity-related variables, rumen fermentation and CH₄ emissions in beef heifers differing in phenotypic RFI

Animals: 22 Simmental/crossbred breeding beef heifers

• Individually tethered

Diet: 2nd harvest grass silage *ad libitum* (DMD 766 g/kg)

Experimental period: 120 d

Measurements:

- Individual feed intake
- Live weight
- Body condition score
- Ultrasonic fat & muscle depth
- Muscularity scores
- Skeletal

Measurements (cont'):

- Selected blood metabolites
- Total tract digestibility (AIA marker technique)
- Rumen fermentation (transeosophageal sampler)

Methane (CH₄) production:

- Measured two 5-day periods
- Weeks 3 and 11

Calibrated tracer gas - SF₆

Bolus administration

• 6 days prior to CH₄ measurement

SF₆ and CH₄ concentrations determined via gas chromatography (Johnson *et al.*, 2006)

• RFI Calculation:

Predicted DMI

- Regressed mean daily DMI on ADG and mid-test BW^{0.75}
- PROC GLM, SAS

RFI = Actual DMI - Predicted DMI

- Heifers ranked on RFI
- Assigned to high, medium or low RFI groupings

Statistical analysis:

- Data were analysed using PROC MIXED, SAS
- Model included
 - Fixed effects of RFI, period and RFI × period
 - Random effect sire
 - Linear covariate date of birth
- Also, regression analysis used to examine relationship between RFI and CH_4

Trait		RFI Group	SEM	P-value	
	High	Medium	Low		
DMI (kg/d)	8.4 ^a	7.7 ^b	7.4 ^C	0.24	*
RFI (kg DM/d)	0.52 ^a	-0.06 ^b	-0.49 ^C	0.092	***
Mid-test LW (kg)	483	482	490	18.3	NS
ADG (kg)	0.6	0.6	0.6	0.07	NS

- No effect (P > 0.05) of RFI on:
 - Body composition traits
 - Visual muscularity scores
 - Skeletal measurements
 - Rumen fermentation parameters
 - Total tract digestibility
- Blood plasma metabolite concentrations
 - Glucose and urea <u>higher</u> (P < 0.05)
 - Creatinine <u>lower (P < 0.05)</u>
 - in high RFI compared to low RFI heifers
 - Other metabolic variables did not differ (P > 0.05) between RFI groups

Trait	RFI Group			SEM	Sig. ¹	
	High	Medium	Low			
CH ₄ (g/d)	297 ^a	275 ^{ab}	260 ^b	10.3	*	
CH ₄ (g/kg DMI)	35	35	36	1.3	NS	
CH ₄ (g/kg LW ^{0.75})	2.9 ^a	2.7 ^{ab}	2.5 ^b	0.08	*	

¹No RFI × Period interaction (P > 0.05)

Trait	CH ₄ Production			P-value
	Period 1	Period 2		
CH ₄ (g/d)	334	220	10.6	***
CH ₄ (g/kg DMI)	40	31	1.4	***
CH ₄ (g/kg LW ^{0.75})	3.3	2.1	0.10	***

Regression analysis:

Period 1:

• Relationship between RFI and CH_4 not significant (P > 0.05)

Period 2:

- 1-unit increase in RFI
 - 25 g/d increase (P = 0.07; R² = 0.16) in CH₄
 - 2.5 g/kg DMI decrease (P = 0.06; R² = 0.17) in CH₄

Summary

- Feed consumption was <u>less</u> (P < 0.05) in low compared to high RFI groups
- RFI <u>no effect</u> (P > 0.05) on
 - Performance-related traits measured
 - Total tract digestibility
 - Rumen fermentation
- Daily CH₄ emissions were <u>less</u> (P < 0.05) on an absolute basis and relative to weight in low RFI heifers

Conclusion

This study provides evidence that improving feed efficiency in cattle, by way of improved RFI, will reduce CH_4 emissions while maintaining animal performance.

