## Piglet birth weight and uniformity

Importance of the pre-mating period

Anne Wientjes





## Technical results, the Netherlands





Kengetallenspiegel Agrovision

## Technical results, the Netherlands





Kengetallenspiegel Agrovision

## Piglet birth weight, uniformity and survival



Birth weight and uniformity negatively related with litter size



Milligan et al., 2002; Quesnel et al. 2008; Wientjes et al. 2012

## How to improve piglet uniformity?



### Part of uniformity at birth already determined in <u>pre-mating period?</u>





# Sow body condition loss during lactation





# Sow body condition loss during lactation



- n = 772 Topigs20 sows with WPI  $\leq 7d$
- Corrected for litter size
- ab P < 0.05

WAGENINGEN UNIVERSITY

WAGENINGEN UR

Wientjes et al. (submitted)

# Prolonged weaning-to-pregnancy interval

|                                    | WPI<br>≤7d               | WPI<br>8-21d             | WPI<br>>21d <sup>1</sup> | SEM | P-<br>value |
|------------------------------------|--------------------------|--------------------------|--------------------------|-----|-------------|
| n                                  | 1,584                    | 72                       | 182                      |     |             |
| Total number born, n               | <b>13.7</b> ª            | <b>14.9</b> <sup>b</sup> | 14.4 <sup>b</sup>        | 0.3 | <0.01       |
| Mean birth weight <sup>2</sup> , g | 1,428                    | 1,438                    | 1,431                    | 17  | 0.83        |
| Birth weight SD <sup>2</sup> , g   | <b>310</b> <sup>b</sup>  | <b>291</b> <sup>ab</sup> | <b>287</b> <sup>a</sup>  | 7   | <0.01       |
| Birth weight CV <sup>2</sup> , %   | <b>22.2</b> <sup>b</sup> | 20.8 <sup>ab</sup>       | <b>20.5</b> ª            | 0.5 | <0.01       |

<sup>1</sup> including repeat breeders <sup>2</sup> corrected for litter size



Wientjes et al. (submitted)

## Yes,

## Pre-mating period is important

- Piglet uniformity is compromised by severe sow body condition losses during lactation
- Piglet uniformity is improved in sows with a prolonged WPI
  - (insufficient) follicle restoration?





## Pre-mating insulin-stimulating diets

#### Dextrose (150g/d) during WII:

|                            | CON   | DEX   | SEM  | P-value |
|----------------------------|-------|-------|------|---------|
| Total born piglets, n      | 13.96 | 13.44 | 0.38 | 0.35    |
| Mean birth weight, kg      | 1.59  | 1.61  | 0.05 | 0.81    |
| CV birth weight, %         | 21.2  | 17.5  | 1.3  | 0.03    |
| Mortality until weaning, % | 7.4   | 6.9   |      | 0.68    |



Van den Brand et al., 2006; 2009

# Pre-mating insulin-stimulating diets

#### Dextrose (150g/d) during WII:

|                            | CON   | DEX   | SEM  | P-value |
|----------------------------|-------|-------|------|---------|
| Total born piglets, n      | 13.96 | 13.44 | 0.38 | 0.35    |
| Mean birth weight, kg      | 1.59  | 1.61  | 0.05 | 0.81    |
| CV birth weight, %         | 21.2  | 17.5  | 1.3  | 0.03    |
| Mortality until weaning, % | 7.4   | 6.9   |      | 0.68    |

#### Dextrose+lactose (both 150g/d) during lactation and WII:

|                            | CON   | DEX+LAC | SEM  | P-value |
|----------------------------|-------|---------|------|---------|
| Total born piglets, n      | 14.25 | 14.40   | 0.52 | 0.84    |
| Mean birth weight, kg      | 1.47  | 1.55    | 0.03 | 0.05    |
| CV birth weight, %         | 23.7  | 20.5    | 1.0  | 0.04    |
| Mortality until weaning, % | 13.4  | 12.1    |      | 0.44    |



Van den Brand et al., 2006; 2009

## Insulin-stimulating diets



Time relative to feeding, min



Wientjes et al. 2012

# Possible mechanism involved (1)





## Possible mechanism involved (2)





## Unravelling the mechanism

- 32 multiparous Topigs20 sows
- Effects of nutritionally increased insulin and/or IGF-1 levels during WII on:
  - Reproductive hormones  $\rightarrow$  LH and P4
  - (uniformity in) pre-ovulatory follicle development
  - Luteal development

WAGENINGENUR

(uniformity in) embryo development at d10





# Insulin/IGF-1 levels during WII related to:

#### Follicle diameter

- basal insulin with follicle diameter at ovulation: +
- <u>LH</u>
  - insulin AUC/mean insulin/IGF-1 with basal LH level: +
- Progesterone
  - insulin AUC/mean insulin with mean and maximal P4: +
- Embryo development
  - insulin AUC/mean insulin with embryo diameter: +

## Relation between mean insulin and P4 at d10



mean insulin, uU/ml



Wientjes et al. (2012)







## Effects of sow metabolic state

#### Conventional sows:

- Catabolic state during 3-4wk lactation
  - $\longrightarrow$  Suppresses insulin and follicle development
- Organic sows:
  - 6wk lactation  $\rightarrow$  4±2 kg (1.6%) body weight loss
  - Switch to anabolic state during last wks?
    - → Follicle development less suppressed?

(larger litters)



## Effect of pre-mating insulin-stimulating diets

|                         | <b>CON</b><br>N = 34 | <b>WII</b><br>N = 42 | LAC+WII<br>N = 39 | SEM  | P-<br>value |
|-------------------------|----------------------|----------------------|-------------------|------|-------------|
| Total born piglets, n   | 17.0                 | 17.2                 | 17.8              | 0.5  | 0.53        |
| Mean birth weight, kg   | 1.28                 | 1.29                 | 1.23              | 0.03 | 0.48        |
| CV birth weight, %      | 23.4                 | 22.6                 | 23.3              | 1.0  | 0.79        |
|                         |                      |                      |                   |      |             |
| Mortality d0-3, %       | 15.8                 | 16.0                 | 16.5              | 1.6  | 0.96        |
| Mortality d0-weaning, % | 27.7                 | 27.2                 | 23.1              | 2.5  | 0.33        |



Wientjes et al. (2012)

## Take home message

- Pre-mating period is important for piglet birth weight and uniformity:
  - Compromised by severe sow body condition losses during lactation
  - Improved in sows with a prolonged WPI

(insufficient) follicle restoration?

- Insulin-stimulating diets during the pre-mating period may be beneficial for follicle development and subsequent piglet birth weight and uniformity
  - <u>But</u> only so in sows with a compromised follicle development at weaning?



# Thanks for your attention!

anne.wientjes@wur.nl



#### Acknowledgements:

- Product Board Animal Feed
- Institute for Pig Genetics (IPG)
- Organic Pig Research Farm Raalte
- Nicoline Soede, Henry v/d Brand, Bas Kemp (ADP-WUR)
- Carola van der Peet-Schwering, Gisabeth Binnendijk (Livestock Research-WUR)