UNIVERSITY OF COPENHAGEN

Faculty of Health and Medical Sciences

Dynamic monitoring of litter size at herd and sow level

Claudia Bono

C. Cornou A. R. Kristensen

Background

Problem

- Increasing herd sizes
- Growing competition from countries with lower production costs

Solution

- Good management
 - Problem
 - Existing Management Information Systems (MIS) are static and typically computed every quarter or year
 - Solution

Objective

Develop new and more reliable methods for dynamic production monitoring

Implementation of automatic methods for detection of systematic deviations from the expected results

Project

The project is divided into three parts that correspond to the analysis levels

First phase:

Sequential estimation of litter size profile and sow effects

- Overall presentation of the project
- Implementation of a previous litter size model with emphasis on sow's properties and herd level

Second phase: Sequential estimation of farrowing rate in sow herds

Third phase: Sequential estimation of mortality rate in sow herds

Material and methods

A model based on Toft and Jørgensen (2002) was implemented:

Material and methods Dynamic Linear Model (DLM)

DLM consists of two equations.

Observation equation
$$\rightarrow$$
 $Y_t = F'_t \theta_t + v_t$,
System equation \rightarrow $\theta_t = G_t \theta_{t-1} + w_t$,

Yt, consists of observed litter sizes of all sows farrowing at week *t*. θt , expresses how the parameter values may change over time.

The parameter vector for week t will be:

$$\theta_t = (\mu_{1t}, \mu_{2t}, \mu_{3t}, \mu_{4t}, \phi_{4t}, \delta_t, M_1(n_1t), \dots, M_N(n_Nt))$$

EAAP - Bratislava, August 28th 2012 Dias 6

Department of Large Animal Sciences

Material and methods

- > Once that the herd specific parameters $(\mu_1, \mu_2, \mu_3, \mu_4, \Phi_4)$ and the time trend (δ_t) were calculated, at any week the last week's estimate is available as a result of the Kalman filter application
- The estimation of the individual property of each sow in the herd is also available
- Expectation-Maximization (EM) algorithm technique was used for estimation of the system variance
- Detection methods (Control chart and V-mask) were applied in order to monitor out-of-control situations

Results – Average of litter size per parity

The profile of most of the herds appears as expected and confirms the shape of the litter size profile.

Results – Litter size per parity (3 years)

This picture shows filtered and smoothed data

- The smoothing reduces the temporary random fluctuation seen in the filtered data
- The smoothing represents the best possible estimate
- Whereas the filtered obtained for a given week will not change later on, the corresponding smoothed value will change on the light of the later observations EAAP - Bratislava, August 28th 2012 Dias 9

Results were monitored both in a short and long time period.

- Monitoring methods:
 - Control Chart \rightarrow Short time horizon (26 weeks)
 - V-mask applied on Cusum \rightarrow Long time horizon (3 years)
- The total number of "negative" alarms in 15 herds is 90, indicating a mean of 2 alarms per herd per year

Conclusions and Perspectives

The system for monitoring farrowing at herd and sow level based on a combination of Dynamic Linear Model, V-mask and Control Chart has proven to be a useful tool for modelling litter size week by week in short and long period.

• Farrowing rate as well as mortality rate can be included in the model to make it a fully functional management tool to monitor and predict production in a dynamic way.

Dynamic production monitoring in pig herds I: Modelling and monitoring litter size at herd and sow level. Livestock Science (2012), http://dx.doi.org/10.1016/j.livsci.2012.07.023 Results

Table : Upper left matrix of the system variance-covariance W (6 x 6). Values of the correlations are shown below the diagonal.

Matrix #	1	2	3	4	5	6
1	0.00072	0.00071	0.00069	0.00068	0	0
2	0.90	0.00087	0.00104	0.00121	0	0
3	0.69	0.95	0.00139	0.00176	0	0
4	(0.53)	0.85	0.98	0.00232	0	0
5	0	0	0	0	1.52e-10	0
6	0	0	0	0	0	1.48e-10
EAA Dias	P - Bratislava 13	, August 28tł	2012 ו			

- EM-algorithm provided stable and suitable results
- High correlations between herd level averages at subsequent parities have been found
- Weekly variances are very low