

Glucocorticoids as Biomarkers for Feed Efficiency in Cattle

Montanholi Y*, Swanson K⁺, Palme R[‡], Vander Voort G*, Haas L*, Miller S*

Outline

- Why biomarkers for feed efficiency?
- Why glucocorticoids?
- Methodology and resources
- Results and comments
- Conclusions and final remarks

Measuring feed intake :

Predicting feed intake:

Residual feed intake (RFI)

FCM: plasma cortisol response with 12h lag time

Palme et al. 2000

	High-efficiency	Low-efficiency	P-value	
FCM (ng/g)	51.1 ^a	31.2 ^b	0.040	
PLC (ng/mL)	40.9	41.3	0.944	
Montanholi et al., 2010)			
Geverick et al. 2002 & 2004:		The first of the second se		
Calmer Col	ergy efficiency			
		Voisnet et al. 1	997:	

Calmer feed efficiency

Hypothesis

Cattle with superior feed efficiency may have greater baseline levels of cortisol as indicated by the FCM concentration.

Objectives

To verify if the relationship between feed efficiency and FCM holds in a larger population of cattle with more samples collected over time.

To compare PC levels measured over the circadian cycle in cattle with distinct feed efficiency.

 50% Simmental or Angus crossbred cattle

112 steers -> 8 pens

Feedlot ration:
 78% high moisture corn
 13.5% haylage
 5% soybean meal
 3.5% premix (monensin, salt, trace minerals, vitamins – soybean meal)

FCM and plasma cortisol determinations

- Blood plasma: RIA Coat-A-Count[®]cortisol (ng/ml)
- Fecal extract: EIA (Möstl & Palme, 2002) (ng/g)

CH₄ determination

STP conditions:

Vstp = (V_measured (L/s) * 2.697) / (Room_Temp (K) / Barometric _Pressure (kPa))

CH4 volume (ml/min):

VCH₄ = V_outlet air flow (L/s) *Difference inlet and outlet concentration (mL/L)

Statistical analysis

GLM procedure:

To compare feed efficiency groups (32 vs. 32 and 12 vs. 12).

MIXED procedure:

To compare repeated measures overtime:

- Plasma cortisol and fecal cortisol metabolites (biweekly sampling, 32 vs. 32).

- Plasma cortisol over the circadian cycle (12 vs. 12).

Productive performance traits and age

Traits	High-Efficiency	Low-Efficiency	P value
Dry matter intake (Kg/d)	9.12 (<u>+</u> 0.14)	10.66 (<u>+</u> 0.20)	< 0.001
Average daily gain (Kg/d)	1.91 (<u>+</u> 0.04)	1.92 (<u>+</u> 0.06)	0.7265
Feed to gain ratio	4.83 (<u>+</u> 0.13)	5.63 (<u>+</u> 0.17)	< 0.001
Residual feed intake (Kg/d)	-0.74 (<u>+</u> 0.07)	0.76 (<u>+</u> 0.09)	<0.001
CH ₄ production* (ml/min)	493.4 (<u>+</u> 21.78)	680.2 (<u>+</u> 20.57)	0.0834
Age start of trial (d)	257.19 (<u>+</u> 3.37)	266.31 (<u>+</u> 4.78)	0.6909

Ultrasound and body weight traits

Traits	High-Efficiency	Low-Efficiency	P value
Backfat thickness start (mm)	2.89 (<u>+</u> 0.28)	3.01 (<u>+</u> 0.40)	0.7757
Backfat thickness end (mm)	12.49 (<u>+</u> 0.81)	13.07 (<u>+</u> 0.57)	0.4806
Ribeya area start (cm²)	59.11 (<u>+</u> 1.00)	58.83 (<u>+</u> 1.40)	0.8417
Ribeya area end (cm²)	108.00 (<u>+</u> 1.39)	108.41(<u>+</u> 1.97)	0.8389
Body weight start (Kg)	330.7 (<u>+</u> 7.76)	335.1 (<u>+</u> 10.98)	0.6906
Body weight end (Kg)	513.7 (<u>+</u> 8.38)	520.2 (<u>+</u> 11.86)	0.5827

Plasma cortisol – biweekly sampled

Fecal cortisol metabolites – biweekly sampled

Plasma cortisol – hourly

Discussion

Endogenous steroids as growth promoters (Fritsche et al., 1999; Courtheyn et al., 2002; Cannizo et al., 2011)

Conclusions

This study provides further evidences of the association between feed efficiency and fecal cortisol metabolites in beef cattle.

Further investigations

- Long term profiles for FCM
- Different animal categories
- Different physiological conditions
- Different husbandry systems

SOP for FCM assessment

Acknowledgments

