Linking genomics to efficiency and environmental traits in dairy cattle

Yvette de Haas Roel Veerkamp, Nico Ogink, Jan Dijkstra, Mario Calus

Animal Breeding & Genomics Centre

This is what we want a cow to do ... (4 to 9 hours/day - Hafez & Bouissou, 1975)

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

... but that's also what causes problems!

Animal Breeding & Genomics Centre

... but that's also what causes problems!

Role of genetics

Efficiency and environmental phenotypes

- Making use of natural variation between animals
 - Cost-effective
 - Permanent and cumulative changes in performance

Information on phenotypes is needed!

- Efficiency and environmental phenotypes are expensive and difficult to measure
 - Indicator traits
 - New technologies
 - Genomic selection

WAGENINGEN

Animal Breeding & Genomics Centre

Outline of presentation

- Traits based on feed intake records
 - Link with genomics
- Traits based on breath analyses
 - Performance of new technologies
 - Monitoring strategies
- Traits based on cow characteristics and milk composition
 - Predictors for efficiency and environmental traits
- Future outlook

Animal Breeding & Genomics Centre

Traits based on feed intake records

Genomic prediction of RFI and PME

Residual feed intake (RFI in MJ/d)

- Energy intake energy requirements for milk, fat, protein, and maintenance (as function of metabolic body weight)
- Predicted methane emission (PME in gram/day):
 - = feed intake (in kg DM/d)
 - x energy content of kg DM (= 18.4 (MJ/kg DM))
 / energy generated by methane (= 0.05565 (MJ/g))

 - x percentage methane of gross energy (= 0.06) x scaling factor [1 + (2.38 level of intake

RFI

0.40

0.32

Heritability; phenotypic correlation; genetic correlation

PME

0.72

0.35

(multiples of maintenance level)) x 0.04]

Animal Breeding & Genomics Centre

Pilot study - available data

- Experimental farm: 613 cows (1990-1997)
 - Feed intake + ration (daily)
 - Body weight (weekly)
 - Milk production & milk contents (weekly)
- Blood samples: 588 cows • Illumina 50k Chip

LIVESTOCK RESEARCH

Genetic parameters

RFI

PME

Accuracy of predicting BV for RFI and PME

	RFI	PME
Pedigree	0.37	0.21
Pedigree + SNP	0.52	0.37

Verbyla et al., JDS, 2010 De Haas et al., JDS, 2011

Animal Breeding & Genomics Centre

Animal Breeding & Genomics Centre

De Haas et al., JDS, 2011

Conclusions - RFI and PME

- Genetic correlation PME with feed efficiency is positive: Cows with low RFI (i.e. high feed eff.) have low PME
- The use of SNP information showed an increase in the accuracy to predict BV for environmental phenotypes
- In future, selection for environmental phenotypes could be performed using genomic selection

Phenotype is king \rightarrow collaboration

Animal Breeding & Genomics Centre

Combining DMI data of AUS-NL-UK

Country	Heifer type	No. anim.	No. SNPs	Rec. period
Australia	Growing	843	624,930	For 60-70d starting at age of 200d
Netherlands	Lactating	599	37,069	First 100d in lactation
UK	Lactating	359	37,069	First 100d in lactation

Animal Breeding & Genomics Centre

Aim of this study

analysed as one trait, or a separate trait per country (multitrait)

Accuracy of genomic selection

De Haas et al., JDS, 2012

Animal Breeding & Genomics Centre

Accuracy of genomic selection

	Uni within	Uni multi	
AU	0.38	0.34	
	(0.03)	(0.05)	
EU	0.31	0.32	
	(0.05)	(0.05)	
UK	0.30	0.33	
	(0.04)	(0.06)	
NL	0.33	0.31	
	(0.09)	(0.09)	

De Haas et al., JDS, 2012

WAGENINGEN

Animal Breeding & Genomics Centre

Accuracy of genomic selection

	Uni within	Uni multi	Tri: AU-UK- NL
AU	0.38	0.34	0.39
	(0.03)	(0.05)	(0.04)
EU	0.31	0.32	0.33
	(0.05)	(0.05)	(0.05)
UK	0.30	0.33	0.33
	(0.04)	<i>(0.06)</i>	(0.03)
NL	0.33	0.31	0.33
	<i>(0.09)</i>	(0.09)	(0.09)

Breath analyses

De Haas et al., JDS, 2012

WAGENINGEN UN

Animal Breeding & Genomics Centre

Conclusions – power of int. collaboration

Accuracy of GEBVs for DMI can be increased by:

- \bullet combining datasets across countries, and
- using a multitrait approach

"Proof-of-principle" is now shown

- Start of global Dry Matter Initiative
 - More phenotypes (≈6,000 animals)
 - More SNPs (591,621)
 - More datasets (10 partners)

Animal Breeding & Genomics Centre

Ways to measure:

WAGENINGEN

Respiration chamber Golden standard! Animal Breeding & Genomics Centre

Ways to measure:

Head hoods

Animal Breeding & Genomics Centre

Ways to measure:

SF6

Animal Breeding & Genomics Centre

Ways to measure:

Ways to measure:

Ways to measure:

Respiration chamberFull day, continuousHead hoodsFull day, only mouth no hindgutSF6Full day, large variationButter boxes (sheep!)Several moments per dayGreenFeederWhile eating concentratesLaserShort measurementsFTIR - milking robotDuring milking

WAGENINGEN

Ways to measure:

Question 1:

How accurate are the measuring methods compared to Golden Standard?

> Animal Breeding & Genomics Centre

Validation of measuring method

- Few groups have validated a measuring strategy with the golden standard:
 - 1. Laser (Chagunda & Yan, AFST, 2011)

Validation of measuring method

• Few groups have validated a measuring strategy with the golden standard:

Animal Breeding & Genomics Centre

Ways to measure:

Question 2:

How accurate can daily methane production be predicted with reduced sampling strategies?

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

Available data feasibility study

Wageningen respiration chambers

- 10 trials:
 - each involved a pair of cows
 - data reported over a 72 hour period spanning 4 calendar days

Methane production for 1 trial

3 scenarios

Measuring

- (1) during milking (i.e. twice daily, for 15 minutes);
- (2) in concentrate feeder (i.e. 5x per day for 6 min.);
- (3) in cubicles (i.e. 4 hours continuously).

Scenarios were simulated by omitting samples

Animal Breeding & Genomics Centre

Scenario

In cubicles

During milking

In concentrate feeder

De Haas et al. (in prep.)

Animal Breeding & Genomics Centre

Accuracies compared to resp. chambers

Scenario	CH4	CH ₄ /CO ₂
During milking	0.85	0.31
In concentrate feeder	0.89	0.33
In cubicles	0.96	0.39

De Haas et al. (in prep.)

Animal Breeding & Genomics Centre

Ways to measure:

Question 3:

Can variation within and between animals be picked up with reduced sampling strategies?

Accuracies compared to resp. chambers

CH₄

0.85

0.89

0.96

Variation within / between animals

Fourier transformed infrared sniffers

Lassen et al., JDS, 2012

WAGENINGEN UR

Animal Breeding & Genomics Centre

Variation within / between animals

Methane analyzers in Lely milking robots

Conclusions ways to measure

- 1. Cheaper equipment can measure methane accurately as well, but there is room for improvement
- Daily methane production can be predicted reasonably accurate by collecting samples of all cows twice daily during milking
- 3. Variation between and within animals still picked up outside respiration chambers
 - Opens up the possibility of creating a large database of individual methane emission phenotypes to be used for genetic and genomic studies

Animal Breeding & Genomics Centre

Predictor traits from cow characteristics and milk composition

Predicting EBV for feed efficiency (35-70 DIM)

- 2. Predictor traits for environment traits
- Potential use of milk mid-infrared spectra to predict individual methane emissions from dairy cows

2. Predictor traits for environment traits

Animal Breeding & Genomics Centre

Conclusions predictor traits

- Feed intake expensive to measure on large scale
 - Yield and type to make the first step
 - Genomics should identify 'net efficient cows'
- Direct methane hard to measure on large scale
 - Predictor traits based on milk composition provide opportunities for large scale collections

Linking genomics to efficiency and environmental traits

- Indicator traits for both efficiency and environmental traits look promising
 - Large scale/national collection
 - Genomics should identify net efficient/environmentfriendly cows

Acknowledgements

Animal Breeding & Genomics Centre

Animal Breeding & Genomics Centre

Thank you for your attention

