

Agricultural Research Organization (ARO) Israel

Detection of early lactation ketosis by rumination and other sensors

Machteld Steensels, Ephraim Maltz, Aharon Antler, Claudia Bahr, Daniel Berckmans, Ilan Halachmi

> 63rd Annual Meeting of the EAAP Bratislava - August 29, 2012

Acknowledgements

- EAAP
- Farmers
- Veterinarians
- Doron Bar, Roni Meir (SCR Engineers Ltd. Israel)

 Contribution no. 459-4426-10 and 459-4369-10 Israeli Agricultural Ministry Chief Scientist Fund

Outline

- Introduction
- Hypothesis
- Objectives
- Material & Methods
- Results
 - Basic statistics
 - Model Development Calibration
 Validation
- Discussion
- Conclusion

• **Past**: livestock management decisions based only on human observation

Last decades: dairy farming → intensive production systems

- Dairy farming in Israel
 - Israeli-Holstein
 - ~ 11500 kg milk/cow/year

- Cow health
 - All cows: Routine check 5 to 12 days after calving
 - One main vet organization: 99 % cows
 Records collected on national level
- Many sensors

- Large quantity of data signals in herd management software
- Many sensors specific purposes
- \rightarrow Give sensor data biological meaning
- GAP: combination sensor data hardly explored

- Ketosis
 - Early lactation
 - 15 % of the cows in Israel

Costs:

- Veterinarian
- Treatment
- Lost milk yield
- Labour

Hypothesis

- Ketosis = Δ behaviour and performance
- Sensors
 - Ruminating time
 - Neck activity
 - Milk yield

Objectives

Identifying post-calving ketosis by:
 Behavioural data (ruminating time, neck

activity)

Performance data (milk yield)

 Build model that can be applied in commercial farms as part of the herd management software

- Sensor: HR-Tag (SCR Engineers Ltd)
 - Cow Identification
 - Ruminating time (min/2h)
 - Neck activity (activity index/2h)

- Data collection:
 - ~ 2000 cows commercial herds
 - Big kibbutz farm: 1100 cows
 - 4 smaller kibbutz farms: ca. 300 cows/farm
- Daily data 2h data
- Start in November 2010

- Golden standard: veterinarian
 Routine check 5 to 12 days after calving
- Procedure
 - □ Ketosis → Ketostix test (measuring AcAc in urine)
- Treatment
 - Drenching with propylene glycol
 Intravenous infusion in severe cases

- Based on health reports and lactation curves:
 - Healthy cows
 - Ketotic cows
 - Excluded:
 - Cows with other health problems (metritis, mastitis, lameness, ...)
 - Cows without Ketostix test results
 - Cows with unexplained drop in milk yield

Preliminary Results - Rumination

Preliminary Results - Neck Activity

Preliminary Results - Milk yield

Objectives

- Identifying post-calving ketosis by:
 Behavioural data (ruminating time, neck
 - Behavioural data (ruminating time, neck activity)
 - Performance data (milk yield)
- Build model that can be applied in commercial farms as part of the herd management software

Model: Development

- Stepwise logistic regression model
 Probability of being sick
 - $f(z) = (1 + e^{-z})^{-1}$
 - $\cdot z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$
 - 2 model outcomes:
 - 0 Healthy
 - 1 Ketotic
- Variables: Ruminating Time, Neck Activity and Milk Yield

Model: Calibration

45 healthy and 45 ketotic cows

Detected value	Referen	Correct	
	Ketotic	Healthy	
Ketotic	37	5	86.0%
Healthy	8	40	00 70

Model: Validation

Model: Validation

144 healthy and 89 ketotic cows

Days to diagnosis	Detected value	Reference value		Correct
		Sick	Healthy	
-2	Ketotic	57	42	71 %
	Healthy	19	89	
-1	Ketotic	68	34	76.0/
	Healthy	21	110	/0 %
0	Ketotic	64	20	01 0/
	Healthy	25	124	OI 70

odel	: Valio	latio	DN Nahariya Rmaich Acre Karmiel Haifa [•] Kiryat Ata
Farm	Correct		Had a 5
1	83 %	•	Netanya
2	70 %		Herzliya o o Kfar Saba
3	91 %		Tel Aviv-Yafoo Petah Tikva Holo West Bank
4	67 %		Ashdod
5	77 %		Ashkelon Beit Shemesh Gaza
			Gaza sti 4 Rahat Arad

Discussion

- Existing farm data
- Exact timing of disease is unsure
- After diagnosis and treatment: recovery
- Misclassified cases \sim
 - Subclinical ketosis (53 %)
 - Environmental conditions
 - Management practices

```
• ...
```

- Improvements
 - Other types of models (survival models, tree based models)
 - Other sensors

Conclusion

- Ketosis = behaviour and performance
- A model can be build
- Practical application: herd management software → automatic list of cows at risk for ketosis

