

Agricultural Research Organization (ARO) Israel

Improving cow welfare: Sensor based detection of lameness

Tom Van Hertem

Stefano Viazzi, Eduardo Romanini, Claudia Bahr, Daniel Berckmans, Andres Schlageter Tello, Kees Lokhorst Ephraim Maltz, Aharon Antler and Ilan Halachmi

EAAP Bratislava – August 2012

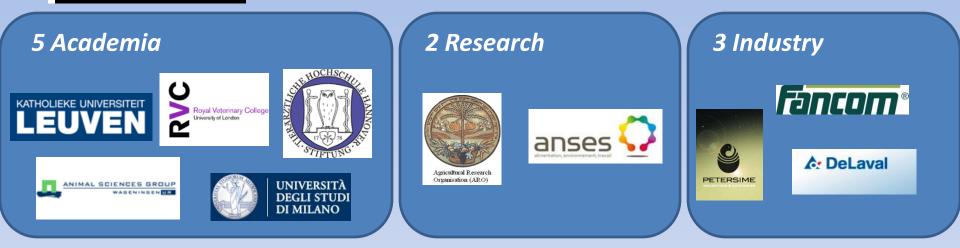
Outline

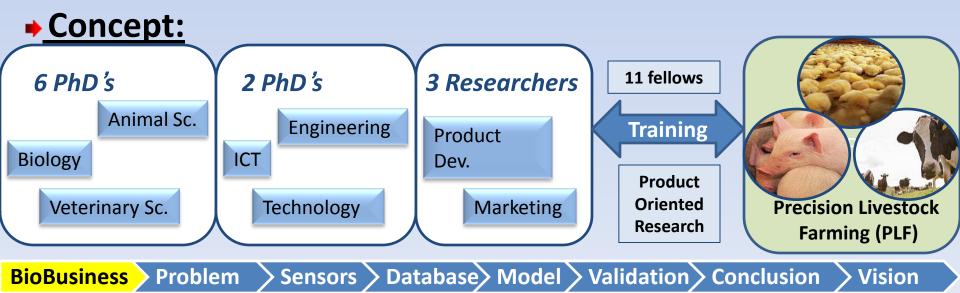
Sensors > Database > Model > Validation > Conclusion

- BioBusiness project
- Problem posing
- Behaviour sensing approach
 - Sensors
 - Database building
 - Model development
 - Validation results
 - Conclusion

BioBusiness > Problem

- Computer vision approach
 - Preliminary results




2

EU-project BioBusiness

Biology + Technology
 Consortium:

Problem: lameness

- Underestimated problem
- Pain \rightarrow welfare
- Economic: €60/cow/year (Bruijnis et al., 2010)
- Visual identification by locomotion scoring
 - Subjective
 - Time consuming
- Automated and objective methods!
 - Monitor lameness prevalence farm

Hypothesis

Sensors > Database > Model > Validation > Conclusion

- Lameness = change in daily routine
 - \rightarrow behaviour sensing

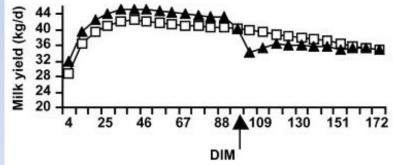
BioBusiness >

Problem

Lameness = change in gait
 → computer vision

Sensors

- HR-Tag[™] (SCR Engineers Ltd., Netanya, Israel)
 - Cow identification
 - Ruminating time [min/2h]
 - Activity [activity index/2h]
 Heat detection
- Free Flow[™] (SCR Engineers Ltd., Netanya, Israel)
 Milk yield



6

Database

- Sep 2011 May 2012 \rightarrow 8 months
- Days In Milk > 40 \rightarrow avoid post-calving diseases
- Lame cows (n=44)
 - Diagnosed and treated for hoof and leg problem
 - No other severe disease (mastitis, digestive problem,...)
- Not-Lame cows (n=74)
 - No diagnosis for any disease
 - Issues with reproduction are allowed
 - Smooth lactation curve

7

Vision

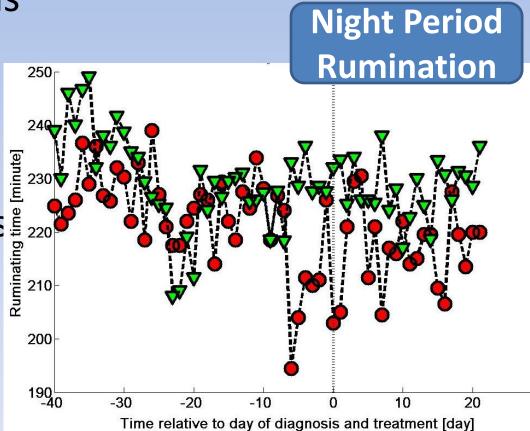
BioBusiness > Problem > Sensors > Database > Model > Validation > Conclusion

State variable selection

39 variables created:

- Night vs day analysis
- Milking time
- Slope

BioBusiness


- Absolute values
- Standard deviations
- Relative values

Problem

- 1 week difference

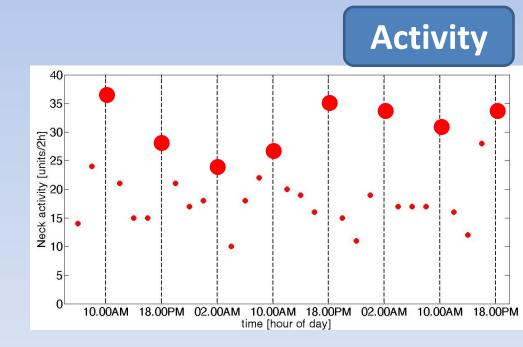
Sensors

- 1 day difference

State variable selection

39 variables created:

- Night vs day analysis
- Milking time
- Slope
- Absolute values
- Standard deviations
- Relative values

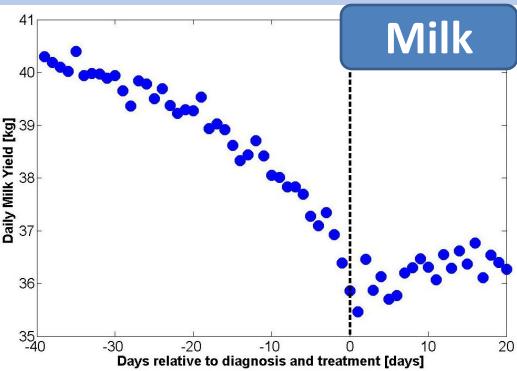

Problem

BioBusiness

– 1 week difference

Sensors

- 1 day difference


Database Model Validation Conclusion

State variable selection

39 variables created:

- Night vs day analysis
- Milking time
- Slope
- Absolute values
- Standard deviations 23
 Relative values

 1 week difference
- - 1 week difference
 - 1 day difference

Problem BioBusiness >

Sensors

Database Model > Validation > Conclusion

10

Model Development

- Output (Lame/NotLame)
- Day ~ [-7:-1]

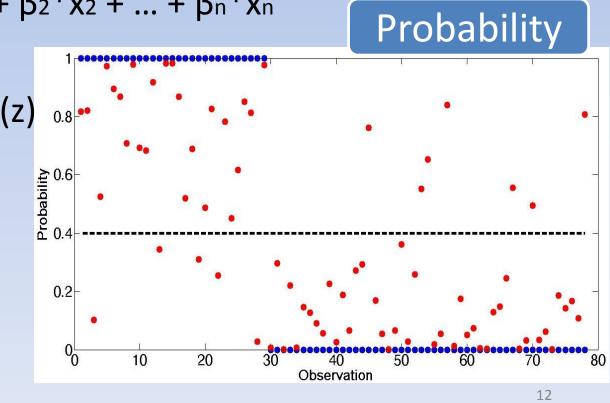
	Milk		Ne	eck Activity	/	Ruminating Time		
var	Day	corr	var	Day	corr	var	Day	corr
Yield	-4	-0.45	Night/day ratio	-6	0.38	Night period	-6	-0.30
Slope	-4	-0.43	Daily sum	-7	-0.29	Daily diff.	-6	-0.29
Week ratio	-4	-0.35	3p max.	-7	-0.25	3p min.	-3	-0.27

\rightarrow Milk > neck activity > rumination

- \rightarrow Not 1 significant parameter
- \rightarrow Combination of Milk, Rumination and Activity

BioBusiness > Problem > Sensors > Database > Model > Validation > Conclusion

Model Development


- Logistic regression
 - 2 model outputs: lame / not-lame
 - Combination of input variables

Sensors >

- $-z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$
- Probability = exp(z) / 1+exp(z)

Problem

BioBusiness

Vision

Database Model Validation Conclusion

Model Validation

• 7 input variables:

Problem

BioBusiness

Sensors >

- Milk: Daily yield, week slope, week ratio and difference
- Neck activity: day period sum, day/night ratio
- Rumination: night period ruminating time

		Calibration		Validation				
	Golden Standard		0.83		Golden S	0.90		
Model	Lame	Not-		Model	Lame	Not-		
		lame				Lame		
Lame	20	4	0.83	Lame	14	3	0.82	
Not-	9	45	0.83	Not-	1	22	0.96	
lame	5			Lame				
	0.69	0.92	78	_	0.93	0.88	40	

Database Model Validation Conclusion

Discussion

Database

BioBusiness > Problem

- Existing farm data
- Golden standard: herd health reports vs locomotion scoring

Sensors > Database> Model > Validation > Conclusion

- Database with extremes (lame vs. not-lame)
- Other types of models and improvements
 - Classification tree model \rightarrow accuracy = 0.73
- Time tolerance of lameness detection
- Early detection vs. showing pain

Conclusion

• Correlation:

milk > neck activity > rumination

Sensors > Database > Model > Validation > Conclusion

- Day- and night period data also important
- Logistic regression model best fit

- Accuracy = 0.90

BioBusiness > Problem

• Room for improvement

15

Hypothesis

Lameness = change in daily routine
 →behaviour sensing

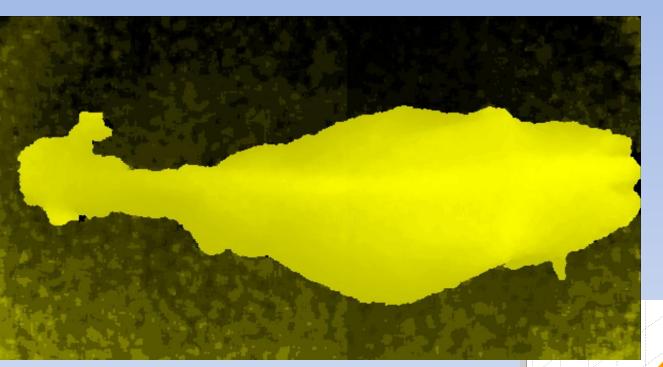
- Lameness = change in gait
 - Arched back
 - Gait asymmetry
 - Head bob

Problem

BioBusiness

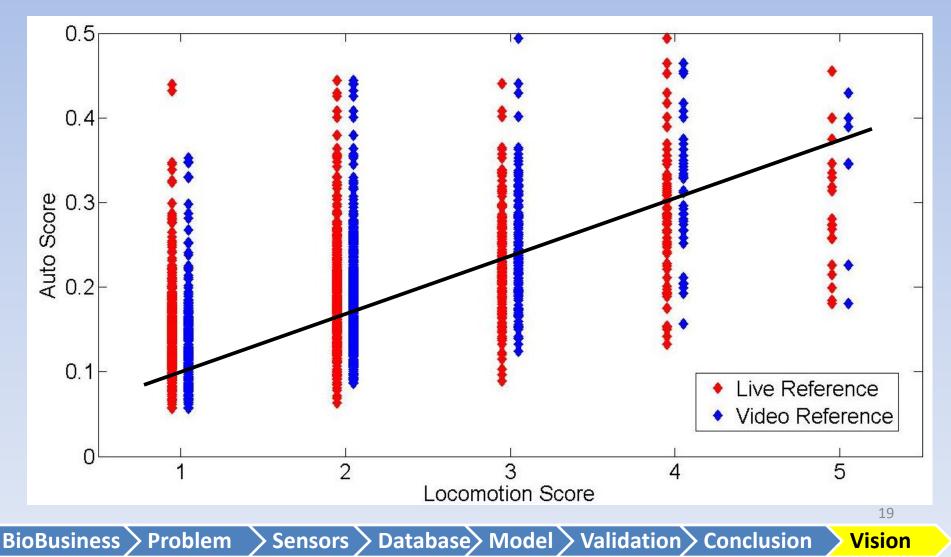
 \rightarrow Computer vision

Sensors >


Database Model Validation Conclusion

BioBusiness > Problem > Sensors > Database > Model > Validation > Conclusion > Vision

First Results: depth image



Extraction of arched back

BioBusiness > Problem > Sensors > Database > Model > Validation > Conclusion > Vision

First Results: mathematical model

AS = 0.0564*LS + 0.0731 $R^2 = 0.3539$

Future work

- Integrated system:
 - Behaviour sensing
 - Machine vision

BioBusiness > Problem

• Incorporated in herd management software:

Sensors > Database > Model > Validation > Conclusion

\rightarrow list of lame cows

Agricultural Research Organization

Thank you! More Questions? tomv@volcani.agri.gov.il

www.bio-business.eu

