



#### Effect of trace mineral supplementation on the reproductive performance of lactating dairy cows

H Watson<sup>1,2</sup>, ACO Evans<sup>2</sup> and ST Butler<sup>1</sup>

<sup>1</sup> AGRIC, Teagasc, Moorepark, Fermoy, Cork. <sup>2</sup> School of Agriculture and Food Science, UCD, Dublin 4, Ireland



The Irish Agriculture and Food Development Authority

### Seasonal, pasture-based milk production



## Background

- Mineral deficiencies in grass
  - depending on region
  - season
  - fertilization strategy
- Mineral deficiencies in cattle
  - pasture deficient or imbalanced
  - concentrate supplementation reduced
- Minerals are essential
  - growth
  - reproduction
  - lactation







## **Main Mineral Deficiency Problems**

| Copper   | -Poor fertility                               |
|----------|-----------------------------------------------|
|          | -Retained placenta                            |
|          | -Compromised immune system                    |
| Selenium | -Retained placenta                            |
|          | -Metritis                                     |
|          | -cystic ovaries, anoestrous                   |
|          | -foetal abortions, weak stillborn calves      |
|          | -White muscle disease in newborns             |
| lodine   | -Retained placenta                            |
|          | -irregular or suppressed oestrus              |
|          | -early embryonic death                        |
|          | -abortion, stillbirths.                       |
|          | -Blind, hairless, weak or dead calves         |
|          | -Goitre; apparent in newborn before the adult |

## **Materials**



- 5 farms involved
  - 2 Teagasc research farms
  - 3 commercial farms
    - >All farms in the South of Ireland
- 1,381 cows
  - 1,311 retained for data analysis
- Herd size 140-500 cows
- Grass samples collected in April, May and June for mineral analysis





- •10 cows/treatment/farm sampled
- •Bloods analysed for Cu, Se and I
- •Ultrasound scanning 35-40 post breeding season
- •Reproduction variables calculated

#### **Animax AllSure Bolus composition**

- Cows <550 kg  $\rightarrow$  1 bolus
- Cows  $\geq$ 550 kg  $\rightarrow$  2 boluses

|               | mg/bolus | mg/day     | Approx req. |
|---------------|----------|------------|-------------|
|               |          | (180 days) | mg/day**    |
| Copper oxide* | 30,000   | 167        | 150         |
| Iodine        | 3,400    | 19         | 6.75        |
| Cobalt        | 525      | 2.9        | 2.06        |
| Selenium      | 500      | 2.8        | 4.5         |

\*Normally poorly available. Cu oxide needles in reticulum does provide coverage

\*\*Lactating cow eating 15 kg DM/day

## **Statistical Analyses**

- Blood trace mineral concentration data
  - checked for normality
  - mixed model repeated measure procedures in SAS
- Fixed effects
  - treatment
  - time
  - treatment × time
  - parity
  - farm
- Cow included as random effect
- Binary reproductive variables analysed using Chisquare test

## **Herbage Trace Mineral Profile**

|                 | Со    | Cu    | I     | Se    |  |
|-----------------|-------|-------|-------|-------|--|
|                 | mg/kg | mg/kg | mg/kg | mg/kg |  |
| Requirements    | 0.11  | 10    | 0.5   | 0.3   |  |
| North Cork      | 0.09  | 9.1   | 0.26  | 0.08  |  |
| North Cork      | 0.11  | 8.7   | 0.22  | 0.06  |  |
| West Cork       | 0.08  | 8.5   | 0.19  | 0.08  |  |
| West Waterford  | 0.15  | 10.6  | 0.23  | 0.13  |  |
| South Tipperary | 0.06  | 9.2   | 0.20  | 0.05  |  |

Requirements from NRC (2001)

## **Plasma Inorganic Iodine**

Overall effect of treatment - P<0.001



#### **Plasma Selenium**

**Selenium (µmol/L)** 0.8 0.4 \* ----- DRY --------BREED Plasma 0.0 DRY&BREED 15 Mar 05 Apr 26 Apr 17 May 21 Dec 11 Jan 01 Feb 22 Feb 07 Jun Bolus 6 weeks 6 weeks after Dry-off MSD pre-breeding MSD

Overall effect of treatment - P=0.03

#### **Effects of TM bolus on reproduction variables.**

|                            | CTRL | DRY  | BREED | DRY_BREED | P-value |
|----------------------------|------|------|-------|-----------|---------|
| n                          | 352  | 340  | 335   | 339       | -       |
| 21 day submission rate     | 80.4 | 82.0 | 78.5  | 79.3      | 0.7     |
| Pregnancy rate to first Al | 51.0 | 52.4 | 53.3  | 53.7      | 0.9     |
| 42 day pregnancy rate      | 66.1 | 65.9 | 64.2  | 70.7      | 0.3     |
| Final pregnancy rate       | 86.3 | 87.0 | 88.0  | 87.9      | 0.9     |

#### Se & I status of CTRL cows



## **Summary and Conclusions**

- Evidence of sub-clinical deficiency
  - Grass
  - Blood
- Plasma I and Se increased for variable periods of time.
- Trace mineral bolus supplementation
  - no effect on herd reproductive performance:
    - herds without clinical deficiency symptoms
    - conc fed until ~3 wks before MSD.

## **Acknowledgments**





The Irish Agriculture and Food Development Authority

# **Questions?**





The Irish Agriculture and Food Development Authority