Environmental impact of milk production can be reduced using indicator traits and genomic selection

Helen Hansen Axelsson
PhD student at the Dept. of Animal Breeding and Genetics,

Background

- Increasing awareness of milk production's environmental impact
- Little attention on specific design of breeding programs to reduce this impact
- World wide implementation of genomic selection

Aim of the study

Study possible breeding strategies in a medium sized dairy cattle breed where the best males and females are genotyped in order to reduce the environmental impact of milk production

Our hypothesis

- New 'environmental traits' can be recorded in a few selected herds
- Phenotype information of these traits can be used in breeding programs with genomic selection for genetic evaluation of cattle

Three traits in the breeding goal:

- Milk production (MP) €83*
- Functional trait (FT) €82
- Environmental impact (EI) €-83

Current
breeding
goal
traits

El- greenhouse gas emissions

^{*} gsdu- genetic standard deviation unit

Experimental design

- No records or genotype data for El
- Records and genotype information for indicator traits correlated to El
- Favorable correlations between EI, MP and FT

Indicator traits for EI

- Three categories of indicator traits:
- 1)Stayability and stature ——all herds
- 2)Live weight and the gas concentration in the breath of the cow —→AMS herd
- 3)Residual feed intake and methane measured in respiration chamber →few selected herds

Heritabilities and accuracies

	h ²	Accuracy
Stayability, STAY	0.02	0.67
Stature, STAT	0.40	0.72
Live weight, LW	0.30	0.70
Gases in the breath, BRH	0.20	0.69
Residual feed intake, RFI	0.35	0.46
Methane, METH	0.25	0.40

Genetic correlations

	r _g EI	r _g MP	r _g FT
Stayability, STAY	-0.30	0.20	0.20
Stature, STAT	0.10	0.35	0.10
Live weight, LW	0.20	0.20	0.10
Gases in the breath, BRH	0.50	-0.10	-0.10
Residual feed intake, RFI	0.60	-0.45	0.20
Methane, METH	0.80	-0.20	-0.20

Scenarios

- 7 scenarios were analyzed:
- The first scenario included no indicator trait (No IT)
- 6 scenarios with indicator traits were STAY, STAT, LW, BRH, RFI and METH

SLU

Method

- Stochastic simulation program ADAM (Pedersen et al., 2009)
- Pseudo-genomic selection: direct genomic values were used for milk production, functional trait and indicator traits with a heritability of 0.99
- Results were averaged over 15 years

Results from simulation

The annual genetic gain (ΔG) in euros and the genetic response in milk production (ΔG_{MP}), functional traits (ΔG_{FT}) and environmental impact (ΔG_{EI}) in genetic standard deviation units

Scenario	ΔG	ΔG_{MP}	ΔG_{FT}	ΔG_{EI}
No IT	49.5	0.256	0.180	(0.161)
STAY	51.4	0.259	0.184	-0.180
STAT	49.4	0.260	0.180	-0.160
LW	49.4	0.253	0.176	-0.168
BRH	53.0	0.249	0.178	-0.215
RFI	52.7	0.257	0.168	-0.213
METH	54.5	0.243	0.176	(-0.241)

Results for METH

The annual genetic gain (ΔG) in euros and the genetic response in milk production (ΔG_{MP}), functional traits (ΔG_{FT}) and environmental impact (ΔG_{EI}) in genetic standard deviation units

Scenario	Accuracy	ΔG	ΔG_{MP}	ΔG_{FT}	ΔG_{EI}
No IT		49.5	0.256	0.180	-0.161
METH	0.40	54.5	0.243	0.176	-0.241
METH	0.10	52.3	0.244	0.180	-0.211

Conclusions

Breeding goals with milk production and functional traits are beneficial for the environment as they result in larger genetic gain in reduced GHG emissions

Conclusions

- Genetic gain in EI enhanced 30-55% by including EI in breeding goal using phenotypic and genomic data of correlated indicator traits
- •No significant reduction in genetic gain for milk production and functional traits

Thank you for your attention!

Contact: <u>Helen.Hansen@slu.se</u>

Coauthors: Freddy Fikse, Morten Kargo, Anders Christian Sørensen, Kjell

Johansson, Karl-Johan Petersson and Lotta Rydhmer

We acknowledge SLF (Stiftelse Lantbruksforskning, Stockholm) for granting this project

Results from simulation

The rate of inbreeding per generation in percentage (ΔF_G) and the generation interval in years (L)

Scenario	ΔF_G	L	
No IT	0.71	2.54	
STAY	0.69	2.53	
STAT	0.76	2.56	
LW	0.76	2.56	
BRH	0.72	2.53	
RFI	0.74	2.55	
METH	0.73	2.57	