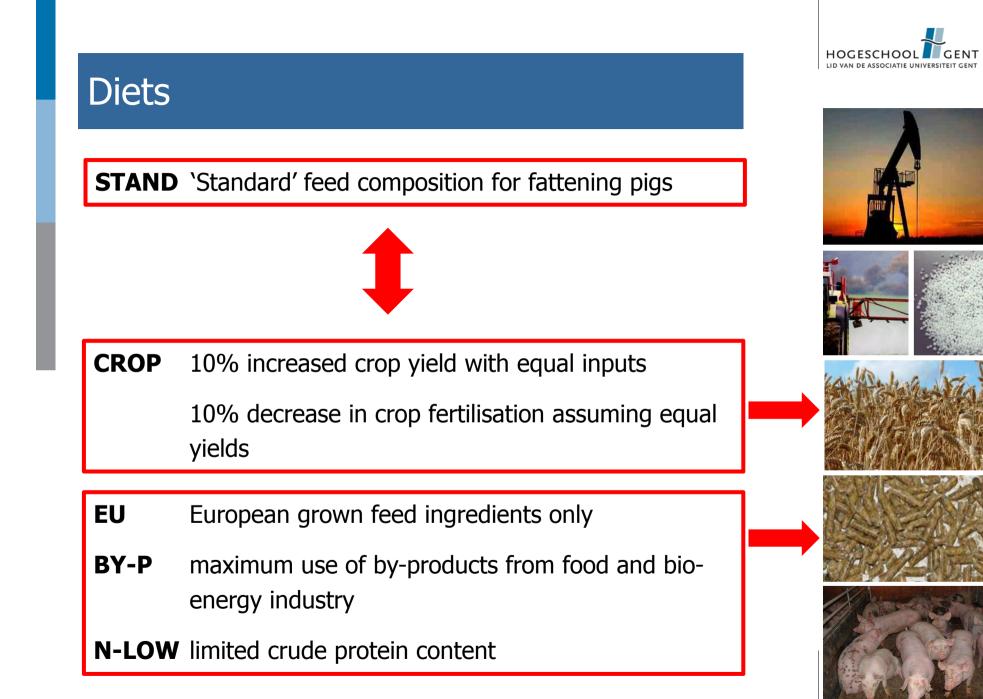


Reducing greenhouse gas emissions of pig production through feed production and diet formulation

> Marijke Meul Department of Animal Production Faculty of Applied Bioscience Engineering University College Ghent

From: M. Meul, C. Ginneberge, D. Fremaut, C.E. Van Middelaar, I.J.M. de Boer, G. Haesaert. 2012. Carbon footprint of five pig diets using three land use change accounting methods. Livestock Science, *in press*.



HOGESCHOOL LID VAN DE ASSOCIATIE UNIVERSITEIT GENT

Diets

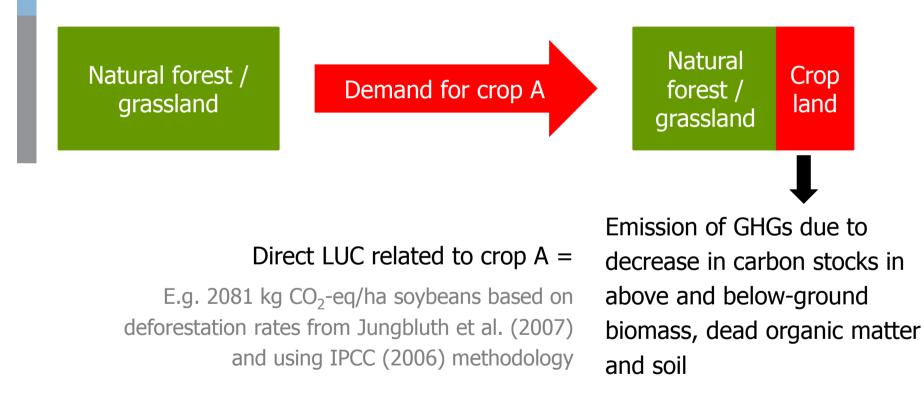
	STAND/CROF	P EU	BY-P	N-LOW	_
feed composition (%)					_
maize	27.7	25.9	9.3	20.1	
barley	24.9	14.7	0.0	22.5	
peas	14.5	15.0	15.0	0.0	
soybean meal (SBM)	10.3	0.0	0.0	1.6	< Brazil
rapeseed meal (RSM)	7.8	12.0	0.0	12.0	
wheat	6.4	19.7	40.0	33.9	
sugar beet pulp (SBP)	4.0	0.0	5.0	4.0	
lupins	0.0	8.3	0.0	0.0	
DDGS	0.0	0.0	15.0	0.0	
maize gluten feed (MGF)	0.0	0.0	10.8	0.0	
soybeans	0.0	0.0	0.0	1.1	< Brazil
synthetic amino acids	0.01	0.17	0.52	0.49	>
minerals and vitamins	4.5	4.3	4.4	4.4	
crude protein content (%)	15.7	15.3	15.9 🤇	13.0	>
P content (%)	0.47	0.47	0.47	0.47	_

All diets are nutritionally equivalent \rightarrow no problem shifting to pig fattening stage

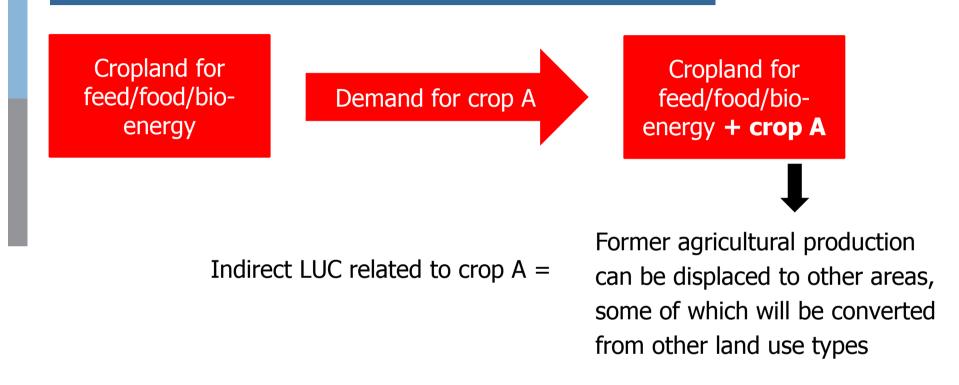
CFP (kg CO₂-eq/ton compound feed) = 1x kg CO₂ + 25 x kg CH₄ + 298 x kg N₂O Attributional LCA

Economic allocation

Primary data, secondary data from scientific literature, Ecoinvent (2010)


Considered processes for all diets:

- Crop production: production of used synthetic fertilizers, lime, pesticides and field machinery; diesel used during field activities; direct and indirect N₂Oemissions and CO₂-emissions from liming
- Processing of harvested crops to feed ingredients
- Production of compound feed
- Transport



CFP including emissions from direct land use change

e.g. Round Table on Responsible Soy \rightarrow only use soybeans from not recently deforested land

 \rightarrow CFP including emissions from only direct LUC is not able to account for the full LUC effects associated with a diet.

CFP including emissions from total LUC risk

worldwide, allocated to products based on their land use

= 1430 kg CO2-eq/ha (Audsley, 2009)

 \rightarrow does not allow to distinguish between feed ingredients with equal land use requirements, but different LUC impacts

Results

	Referer		dLUC	То	tal LUC	isk	L	and use		
	crop	processing	transport	total	kg	CO₂-eq	ton⁻¹			m² ton ⁻¹
	production									
Barley	327	10	20	357	0		174			1216
SBP ^a	54	755	37	846	0		20			138
Lupins	370	10	20	400	0		545			3811
Maize	368	10	20	398	0		124			868
Peas	447	10	20	477	0		507			3543
RSM ^a	396	25	16	437	0		163			1143
Soybeans	332	10	242	584	784		546			3818
SBM ^a	265	85	205	555	627		437			3055
Wheat	420	10	20	450	0		153			1072
MGF ^a	160	128	30	318	0		54			378
DDGS ^a	267	360	33	660	0		98			682
SAA ^a	-	-	-	3600	-		0			0

Results

	Reference CFP		CFP including dLUC		Land use		Total LUCrisk		CFP including total LUC risk	
	average	% of	average	% of	average	% of	average	% of	average	% of STAND
		STAND		STAND		STAND		STAND		
STAND	452		517		1534		219		671	
CROP										
yield +10%	426	94	485	94	1395	91	199	91	625	93
mineral fertilizer -10%	432	96	497	96	1534	100	219	100	651	97
EU	437	97	437	85	1599	104	229	104	666	99
BY-P	513	113	513	99	1191	78	170	78	683	102
N-LOW	461	102	479	93	1041	68	149	68	610	91

N-LOW diet has lowest CFP

EU diet has lowest CFP

Conclusions

- → CFP of pig diets can be lowered through optimization of crop production and formulation of diets
- → Accounting for greenhouse gas emissions associated with direct LUC and total LUC risk has a major impact on the results
- → We propose to apply two decision rules when trying to formulate diets with low carbon footprints:
 - (1) avoid direct land use change as much as possible and
 - (2) minimize carbon footprint including total land use change risk

