

Genome-wide association study for genetic heterogeneity for milk yield and somatic cell score

Freddy Fikse, Lars Rönnegård, Han Mulder, Erling Strandberg

Objective

Identify genomic regions affecting genetic heterogeneity for milk yield and somatic cell score in Swedish Red cattle

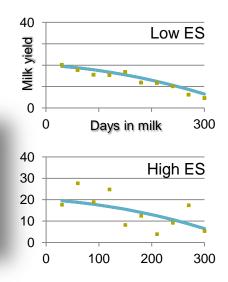
Background

Genetic heterogeneity = Environmental sensitivity
Animal-specific response to short-term changes
in environment

Results

Table: Number of SNPs with signal

Evidence	Milk yield	Cell score
Strong	2 (2)	1 (0)
Substantial	5 (0)	3 (0)


In brackets: number of SNPs also affecting mean performance, suggesting a scaling effect

Data

- 701 Swedish Red bulls
- Illumina Bovine SNP50 BeadChip
- Breeding values for environmental sensitivity
 - Test-day observations for milk yield and somatic cell score
 - Approx. 300 thousand Swedish Red cows
 - Analyzed with double hierarchical generalized linear model

Acknowledgements

This project was financed by the RobustMilk project, which is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-211708. The content of this paper is the sole responsibility of the authors, and it does not necessarily represent the views of the Commission or its services.

Conclusions

- Several regions identified
- Partly due to scaling effect

Methods

- All SNPs fitted simultaneously
- Bayesian variable selection
 - Allele effects follow a 2-component mixture distribution
 - Prior probability of large effect: 0.05
- Bayes factors:
 - > 3: substantial evidence
 - > 10: strong evidence

