

R. Lefebvre, H. Larroque, S. Barbey, Y Gallard, J.J. Colleau, C. Chantry-Darmon, A.L. Laine and D. Boichard

cattle population

Introduction

- High interest in reproductive traits of dairy cattle
- But are usually limited to traits defined from insemination and calving dates
- Traits related to ovary activity are rarely available, because they are more difficult to record
- Goal of this study = to detect QTL responsible for ovary activity
- Crossbreeding design between Holstein and Normande breeds carried out in Le Pin INRA experimental facility

Experimental design

Why crossbreeding?

Segregation of loci fixed or at low frequency within breed

Data

- Blood progesterone (P4) assessed every 10 days until positive assay
 - √ from 230 days old for heifers
 - √ from 20 days post-partum for primiparous cows
 - √ from F1 to F3 generation
- Genotyping with Illumina BovineSNP50® Beadchip

 \Rightarrow 1096 heifers and 1038 cows

Traits analyzed

- Age at puberty = date of 1st ⊕ P4 assay birth date
- Time to resumption = date of 1st ⊕ P4 assay calving date

Trait	N	Mean (± SD)	h²	r_{g}	r_p
Age	1096	307 d (± 51)	0.37	0.24	0.02
Time	1038	31.1 d (± 12.5)	0.17	0.24	0.03

Models

Linkage Disequilibrium and Linkage Analysis

(Meuwissen and Goddard, 2001)

→ applied to Model 1 or Model 2

M1: y = season*year + polygenic effect + QTL effect + e (haplotypes of 6 SNP)

M2 : Age = M1 + (weaning weight / adult weight)
Time = M1 + age at calving + calving difficulty

Trait adjustments

Age at puberty	r_p
Weight ratio	-0.20

= Genetic adjustment

→ trait is different in M1 and M2

Time to resumption	\mathbf{r}_{p}
Age at calving	0.13
Calving difficulty	0.09

= Environmental adjustments

→ mean can change but still the same trait

Chromosome	M1
1	X
2	
3	
5	XX
8	
10	XX
11	X
12	
13	XX
14	
18	XX
21	XXX
24	X
25	
26	X
27	X
28	X
29	XXX

M1: 20 regions detected X

Chromosome	$M1 \rightarrow M2$
1	X
2	
3	
5	XX
8	
10	(X X)
11	X
12	
13	XX
14	
18	(X X)
21	X X (X)
24	(X)
25	
26	(X)
27	X
28	(X)
29	XXX

M1: 20 regions detected X

M2:

✓ 8 disappeared (X)

⇒ specific to growth rather than ovarian activity?

Chromosome	M1 → M2
1	XXX
2	X
3	X
5	XX
8	XXX
10	(X X)
11	XX
12	X
13	XXX
14	X
18	(X X)
21	X X (X)
24	(X)
25	X
26	(X)
27	X
28	(X)
29	XXX

M1: 20 regions detected X

M2:

- ✓ 8 disappeared (X)
- ⇒ specific to growth rather than ovarian activity?
- √ 12 common regions

 X
- ✓ 12 new regions X

Chromosome 1

Results: Time to resumption

Chromosome	M1
1	XX
3	XX
5	
8	X
11	XX
17	X
21	XX
26	XX
27	XX

Results: Time to resumption

Chromosome	$M1 \rightarrow M2$
1	X (X)
3	XX
5	
8	X
11	XX
17	X
21	XX
26	XX
27	XX

M1: 14 regions detected X

M2:

√ 1 disappeared (X)

√ 13 common regions X

Results: Time to resumption

Chromosome	M1 → M2
1	X (X)
3	XX
5	X
8	X
11	XX
17	X
21	XX
26	XX
27	XX

M1: 14 regions detected		
M2 :		
√ 1 disappeared	(X)	
√ 13 common regions	X	
✓ 1 new	X	

⇒ limited effect of calving age and calving difficulty on QTL detection

Conclusions

- Many QTL detected for both traits
- Only 2 common regions (chromosome 21) between traits
 - → in agreement with their low correlation
- Age at puberty
 - ✓ More QTL probably because of a relatively higher recording accuracy
 and a higher heritability
 - ✓ Different trait when considering the raw measure or after adjustment for relative weight maturity
 - ✓ Strongest regions on chromosomes 13 (61Mb) and 29 (26Mb)
- Time to resumption
 - ✓ Adjustements don't affect QTL detection
 - ✓ Strongest regions on chromosomes 21 (26Mb) and 26 (33Mb)

Genes of interest in these strongest regions?

- Other phenotypes: analysis in process
 - → colocalization of QTL?

Acknowledgements

- ✓ Le Pin experimental farm staff
- ✓ Hormonal Assay Laboratory (INRA Tours)

Thank you for your attention

