

Ojinegra sheep local breed: Identifying factors of variability of performance

R. Ripoll-Bosch^{1*}, D. Villalba², I. Blasco¹, S. Congost³, F. Falo⁴, R. Revilla³, M. Joy¹

¹CITA. Av. Montañana 930, 50059 Zaragoza, Spain. ²UdL-ETSEA. Av. Rovira Roure 191, 25198 Lleida, Spain. ³CTA. Apdo. 617, 50080 Zaragoza, Spain. ⁴AGROJI. Plaza del Ayuntamiento 1. 44556 Molinos, Spain.

Objective

To characterize live weight (LW) and body condition score (BCS) of ewes at lambing and at weaning; live weight at birth (LWb) and average daily gain (ADG) of lambs of Ojinegra sheep breed; and to determine and quantify factors of variability in results

Material and Methods

Location of Ojinegra sheep breed

Sampling

• 8 farms, 4365 ewes and 6406 lambs of Ojinegra sheep breed

Measurements

- Ewes: 2556 LW and 2662 BCS measurements at lambing; 2120 LW and 2207 BCS measurements at weaning
- Lambs: 6381 LW at birth and 9453 LW random measurements along lactation (90 days maximum)
- ADG: was estimated for each lamb through quadratic regression model
 Statistics
- Data was analyzed with MIXED procedure, with farm as random effect

Results

Ewes	LW (kg)		BCS (score;1-5)	
	Mean	SE	Mean	SE
Lambing	43.3	± 1.5	2.55	± 0.07
	Variance explained (%)			
Farm	30.7		17.3	
Rest of effects ¹	5.1		1.2	
Weaning	42.3	± 1.2	2.73	± 0,07
	Variance explained (%)			
Farm	20.9		17.4	
Rest of effects ¹	7.3		2.4	

¹ Ewe's age, lambing season, lamb gender, type of birth and its double interactions

affected by ewe's age, lambing season and
the farm $(p<0.05)$; lamb gender and type of
birth had no effect (p>0.05)

LW of ewes at lambing and at weaning was

- BCS of ewes at lambing and at weaning was affected by ewe's age, lambing season and the farm (p<0.05); type of birth had effect on BCS at lambing but not at weaning; lamb gender had no effect (p>0.05)
- LW at birth **ADG** Lambs (kg) (g/day) Mean SE Mean SE 3.5 ± 0.67 168 Variance explained (%) 20.5 16.4 Farm 8.7 Rest of effects 10.8

- LW at birth of lambs was affected by ewe's age, lamb gender, type of birth, BCS of ewe at lambing, the farm and interaction "type of birth * lambing season" (p<0.05); lambing season had no effect (p>0.05)
- ADG of lambs was affected by ewe's age, lambing season, lamb gender, type of birth, BCS of ewe at lambing and the farm (p<0.05)

Conclusion

Farm withhold the highest variance among variables studied. Therefore, farm effect should be strongly considered when characterizing productive parameters of a breed

 $^{^2\}mbox{Ewe}\mbox{'s}$ age, lambing season, lamb gender, type of birth, BCS of ewe at lambing and its double interactions