

COMBINED EFFECTS OF HUMIC ACIDS AND PROBIOTIC ON HEALTH AND PERFORMANCE OF JAPANESE QUAIL

Hanusová, E^{.1}, Pospišilová, D.², Hanus, A.¹, Árvayová, M.² and Peškovičová, D.¹,

¹Animal Production Research Centre Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia, ²Vetservis,s.r.o., Kalvária 3, 949 01 Nitra, Slovakia, hanusova@cvzv.sk

Objectives

- To observe the growth from birth to adult (42 days of age), the reproduction performance and the microbiological composition of intestinal contents
- To investigate the combinate effects of the humic acids (Humac Natur) and probiotic (Propoul) on performance and health in Japanese quail

Material and Methods

- Total 111 Japanese quails from birth to 44 weeks old
- Control group (CON) standard diet (ME= 11.7 kJ/kg, CP≥200g/kg);
- Experimental group (EXP) standard diets + humic acids (3 g Humac / kg feed) + one week in month Lactobacillus fermentum based probiotic (Propoul 0.06 g/bird)

life

Favour laying performance

experimental groups

- Japanese quails were weighted at age of 28 and 42 days; microbiological compositions were examined at 33 (H), 40 (H+P) and 42 (H) weeks
- Laying performances were examinated for 201 days
- Statistical significances of differences were determined by using TTEST (SAS/STAT, 9.2, 2008).

Results

- Cumulative mortality at 10 days was lower in EXP (3,3%) than in CON group (10,9%)
- Experimental animals were havier than control (at 28 days of age 101.6 g, 94,5 g resp;)
- Birds given both addition laid heavier (P=0.04) eggs and showed a higher (P=0.03) laying performance 165 and 151 eggs/201 days) than control
- Microbiological composition of intestinal contents confirm the absence from clostridia in the birds given Humac+Propoul (under 10KTJ/g) lactobacillus are the competitive microflora to clostridia

Table 1: Live body weight differences between groups					
Age (days)	Group	N	$\pi \pm SD$	Probability	
28	CON	56	94,5 ± 2,04	P=0,011	
28	EXP	57	101,6 ± 1,86		
42	CON	55	144,4 ± 2,41	P=0,193	
42	EXP	56	148,4 ± 1,83		

Table 2: Laying performance of Japanese quail					
Characteristic	Group		Probability		
	EXP	CON			
N Female	27	27			
Laying days	201	201			
Average laying (N eggs)	165,48	150,78	P = 0.031		

Improve body weight development to some extend

- Absence of clostridia in intestinal contents

treatment and improve the animals health

Humid acids and probiotics reduce mortality at the early

Long-term using of both addition decreases need for

Table 3: Average eggs weight					
Group	N	Egg weight (g)			
		$x \pm SD$	Probability		
EXP	278	11,924 ± 1,0319	P= 0.040		
CON	229	11,647 ± 0,9209			

ANIMAL PRODUCTION RESEARCH CENTRE NITRA