

Institute of Agricultural and Nutritional Sciences Animal Hygiene and Reproduction in Farm Animals

Martin-Luther-University Halle-Wittenberg

The role of *Escherichia coli* in the pathogenesis of coliform mastitis in sows

Kemper N.¹, Gerjets I.², Looft H.³ and Traulsen I.²

- ¹ Institute of Agricultural and Nutritional Sciences (IANS), Martin-Luther-University, Halle-Wittenberg, Germany
- ² Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- ³ PIC Germany, Schleswig, Germany

Introduction

⇒ today: larger litter sizes

1970/1980ies ~ 5-7 kg (Elsley 1971, Noblet&Etienne 1986)

2012 ~ Ø 12 kg (Weber 2012)

milk amount and quality are essential for piglets' growth!

⇒ any reduction leads to serious consequences

Introduction

- ⇒ milk yield can be negatively altered by coliform mastitis as part of the Postpartum Dysgalactia Syndrome (PDS)
- ⇒ multifactorial disease
- ⇒ clinical and subclinical cases
- ⇒ consequences for sow's <u>and</u> piglets' health

2-3

Risk factor analysis

⇒ > 1 piglets born dead

	Trisk ractor	anarys	
			mastitis-risk û
Variable/Level	Odds ratio	P-value	
Piglets born alive			
<12	1.00		
12-13	1.07	0.0032	
>13	1.65		⇒ >13 piglets born alive
Piglets born dead			

2-13	1.07	0.0032
13	1.65	
iglets born dead		
	1.00	

1.00

0.59

⇒ 1. parity 4-5 0.51 0.67 >5 obstetrics 1.00 0.008 yes ⇒ after birth assistance 1.72 no (n = 1337)(Gerjets, Traulsen, Reiners & Kemper 2011)

Bacterial pathogens

endogen infection (guts, uterus, urinary tract)

⇒ galactogen infection: between 108. day of pregnancy and 2 days post partum (Bertschinger et al. 1990)

⇒ no significant differences in the bacterial spectrum of cranial and caudal teats (Kemper & Gerjets 2009)

⇒ bacteria of the skin flora are also present in milk (Kemper & Preißler 2011)

Material and methods

- ⇒ ,Structural and functional analysis of the genetic variation of the MMA-Syndrome'
 - (geMMA, funded by the German Ministry of Education and Research)
- high health status, free from PRRS, APP, Dysentery, Rhinitis, Salmonella
- ⇒ mastitis-prevalence from 6.1 10.8%

Material and methods

trait, diseased: rectal temperature >39,5°C 24h post partum and inflammation of the mammary gland and/or altered piglet behaviour

⇒ bacteriological analysis of milk samples from healthy (n=979) and diseased (n=1,026) sows

Results

- milk samples from sows with mastitis (n=1,026)
- \square milk samples from healthy sows (n=979)

Escherichia coli

LPS

Virulence factors

endotoxins (in each bacteria-cell)
Lipid A from the LPS-complex
of the cell layer

essential for the pathophysiological processes in mastitis!

enterotoxins heat labile (LT) and -stable (ST) enterotoxins

⇒ cytotoxins hämolysins, Shigatoxins, necrotising toxins

⇒ adhesion factors
 fimbrieae, proteins: Intimin, Invasin

Escherichia coli

Prevalence of virulence-associated genes in *E. coli*-isolates of healthy and diseased sows

multiplex-PCR: detection of27 virulence genes

Gene(s)/categories		prevalence of virulence-associated genes (%)				P-value
		E. coli isolates (n = 1,271) of CM-negative sows	no. of farms with isolates with the respective gene	E. coli isolates (n = 1,132) of CM-positive sows	no. of farms with isolates with the respective gene	
Adhesins						
afa / dra	ExPEC	-	-	-	-	-
fimC	ExPEC	82.30	4	84.72	4	0.1112
hra*	ExPEC	11.33	4	14.84	4	0.0106
iha	ExPEC	0.16	2	0.18	2	0.9077
sfa / foc	ExPEC	0.08	1	0.18	2	0.4971
K99 (fanA)	ETEC	-	-	-	-	-
K88 (faeG)	ETEC	0.08	1	0.09	1	0.9367
987P (fasA)	ETEC	0.08	1	-	-	0.3443
F18 (fedA)	ETEC	-	-	0.09	1	0.2892
F41 (fedA subunit) Iron acquisition	ETEC	-	-	-	-	-

- ⇒ significant differences in *hra, chua, iroN, kpsMTII*
- ⇒ especially virulence genes of extra-intestinal pathogenic *E. coli*strains

піун	LXI LO	1.05	4	2.50	3	0.1109
Enterotoxins						
STII	ETEC	-	-	0.18	1	0.1338
STI	ETEC	2.28	2	1.94	1	0.5658
LT	ETEC	-	-	0.09	1	0.2892
Shiga Toxins						
Stx2e	STEC	-	-	-	-	-
Invasins						
gimB	ExPEC	0.08	1	0.00	-	0.3452
ibeA	ExPEC	0.63	3	0.97	2	0.3443
Miscellaneous						
pic	ExPEC	0.63	4	1.33	3	0.0804
malV (RPail	ExPEC			0.18	1	0.1338

Escherichia coli

Associations between 12 virulence-genes of *E. coli*-isolates of diseased and healthy sows, dark red: p<0.05

Discussion

- ⇒ no characteristic virulence gene-pattern in *Escherichia coli*
- no specific 'Mastitis-strain'
- ⇒ farm-specific virulence gene-patterns
- if adverse co-factors are present, nearly any strain is able to cause mastitis

Discussion

Possible reasons for positive bacteriological results in clinically unaffected sows:

- **⇒** bacterial colonisation
- ⇒ emerging subclinical mastitis in sows
- ⇒ contamination via teat canal (two to three milk cisterns)
- ⇒ resistance/tolerance due to genetic variation
- ⇒ resistance/tolerance due to unknown factors

Conclusion

- ⇒ Escherichia coli
- ⇒ and others...

Environmental factors

- ⇒ husbandry
- ⇒ hygiene
- **⇒** feeding

Sow factors

- **⇒** parity number
- **⇒** behaviour

strategic & integrated approaches for reduction on farm level!

Institute of Agricultural and Nutritional Sciences Animal Hygiene and Reproduction in Farm Animals

Martin-Luther-University Halle-Wittenberg

The role of *Escherichia coli* in the pathogenesis of coliform mastitis in sows

Thanks for your attention!

