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Methane (CH4) and N excretion, trade-offs  

 Trade-offs nutritional measures to reduce enteric CH4 

 

 At animal level  

● Digestibility feed, feed composition 

● Feed intake, feeding value, animal productivity 

 At farm level 
● Manure storage, application (ammonia, indirect N2O) 

● Soil N emissions (direct N2O) 

● Soil organic matter sequestration (CO2)   

 External to farm 

● e.g. machinery, transport, deforestation, soils,...  

this presentation 



Directing CH4 

 Originates from rumen fermentation  mainly                            
(~ 90%) 

 

 Need to calculate CH4 because hard to observe on-farm 

● CH4 concentration in air             
sample measurable,  but           
to direct CH4 farmer          
unit g CH4/cow/d needed 

● Inaccurate and discontinuous            
measurements in practice 

 To calculate CH4 emission: 3 causal factors 

● OM degradation 

● Efficiency microbial growth 

● Amount and type of VFA formed 

 

 

 

 

 



Dietary effects on rumen fermentation 
3 causal factors to quantify effects on CH4 
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Chemical composition affects CH4 

 Line 1 

● Level 2 

 Line 2 

● Level 2 

● Level 2 

● Level 3 

● Level 3 

 Line 3 

 Line 4 
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Bannink et al (2006) 
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Options to reduce CH4, possible trade-offs 

• Reducing rumen fermentable OM,                          
without loss of feed intake, (fibre) digestibility, production 

     - Include fat  

     - Resistant protein & starch    

     - Starch for sugar 

• Change (composition, digestibility) carbohydrates ,                           
without loss of feed intake, structural value, production       

     - Starch for sugar and fibre 

     - Less fibre, more protein 

     - Higher digestibility   
  

• Change feed intake, intraruminal fermentation conditions,                                
without loss of feed intake, fibre digestibility, production 

     - Higher intake/production, faster fermentation/lower pH 

 

 

 

 

 

 

 



Directing emissions: estimating CH4     
simple or complicated? 

 

Inputs required by model  IPCC Tier 2 Regression Dynamic 

Digestibility / NEL or ME value diet      ₰      ₰ 

NEL requirement → Feed intake      ₰    ( ₰ ) 

Feed intake          ( ₰ )     ₰ 

Chemical composition → GE value diet      ₰    ( ₰ )      

Chemical composition      ₰     ₰ 

Rumen degradation characteristics     ₰ 

Other (empirically available) dietary factors    ( ₰ ) 

 IPCC Tier 2 (1997): CH4 energy = 6% of gross energy intake  

 Regression models: including other (dietary) factors 

 Dynamic models: mechanism represented (previous slide)  



Estimating 3 causal factors too complicated? 
Input types ordered by colour for various models 

Inputs required for model : IPCC Tier 2 Regression Dynamic 

Digestibility / NEL or ME value diet      ₰      ₰ 

NEL requirement → Feed intake      ₰    ( ₰ ) 

Feed intake          ( ₰ )     ₰ 

Chemical composition → GE value diet      ₰    ( ₰ )      

Chemical composition      ₰     ₰ 

Rumen degradation characteristics     ₰ 

Other (empirically available) dietary factors    ( ₰ ) 

 All calculations methods rely on similar input types   

 But, inputs different origin and models ‘handle’ differently 

 Model of choice depends on data, aim and detail required 

aim =  anticipate on-farm,  
 not general inventories afterwards   



Directing N excretion  

 Mainly depends on N intake & animal productivity 

 Again, rumen plays important role 

● Faecal N digestibility 

● Urine (urea) N : Faecal N  

● Recycling urea from                      
blood to rumen                                                         e 
importance with lower dietary N 

  

 Estimating effects on N excretion 

● By balance calculation  
N excreted = N intake – N animal product 

 Estimating N2O emissions 

● Directly (manure N) or indirectly (ammonia, nitrate) 

● Excreta fouled surfaces, manure storage and application 
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Simplify: calculated N balance 
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 Simulations with                                                
mechanistic ‘rumen’ model 

   ( Dutch Tier 3 for enteric CH4 in cows ) 

     Dijkstra et al 1992; Mills et al 2001; Bannink et al 2011 

 

 90% grass diets, with effect of grassland management  

● high (HF) vs. low (LF) fertilized (350 or 150 kg N/ha) 

● early (EC) or late (LC) cut (3000 or 4500 kg DM/ha) 

 40 diets, including same grassland management effects 

● part of grass silage replaced by 

           straw; beet pulp; maize silage; potatoes 

● varying feed intake: concentrate level 20% or 40% 

● feed intake according to Dutch feed intake capacity 

 

Calculated trade-off CH4 and N excretion 
effects grassland management & nutrition  



Effect grassland management on CH4 
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Compared to IPCC Tier 2 

GH = herbage; GS = grass silage 

high N-fertilization low N-fertilization 

EC = early cut; LC  = late cut  

Bannink et al  (2010) 

18 kg DM/d (90% grass & 10% concentrates)  
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Similar observations reported  - 1 -  
 Murray et al 2001; 4-day grazing sheep, grass pasture, tunnels 

 

higher CH4 per kg sheep LW, with less N fert./ha,                

clover initially comparable to high fert. grass 

 



Similar observations reported  - 2 -   

Dijkstra et al  (2011) 
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Bannink et al 2010; cows, grass herbage, chambers 



 Simulations with                                                
mechanistic ‘rumen’ model 

   ( Dutch Tier 3 for enteric CH4 in cows ) 

     Dijkstra et al 1992; Mills et al 2001; Bannink et al 2011 

 

 90% grass diets, with effect of grassland management  

● high (HF) vs. low (LF) fertilized (350 or 150 kg N/ha) 

● early (EC) or late (LC) cut (3000 or 4500 kg DM/ha) 

 40 diets, including effect of grassland management 

● grass silage partly replaced by 

   straw, beet pulp, potatoes (15%); maize silage (50%) 

● varying feed intake: concentrate level 20% or 40% 

● feed intake according to feed intake capacity model 

 

Example of trade-off CH4 and N emission 
simulated effects of grassland management 



CH4 vs. N excreted per kg corrected milk 
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CH4 vs. N excreted per kg corrected milk 

Dijkstra et al  (2011) 
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CH4 vs. N excreted per kg corrected milk 

Dijkstra et al  (2011) 
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 Trend of less CH4 with more N excreted per kg corr. milk 

 Previous notions in inventories monitoring that lowering 
farm N surplus generally leads to less GHG questionable 

 applies when coming down from extreme N surpluses,  

 not for on-farm management 
 
 Simulated general trend indicates (Dijkstra et al 2011) 

         ↓ 1 g N excreted/kg milk   ↑ 0.24 g CH4/kg milk  

                    thus, 1 g N ≈ 0.01 g N2O versus 0.24 g CH4   

   ( in addition to direct loss also indirect losses )  
  

            GWP N2O : GWP CH4 = 298 : 25 

          thus, less N generally compensated by more CH4 
 

Simulated trade-off CH4 and N excretion 
 



On-farm monitoring  
to anticipate 

• Most measurements not                                     
useful to monitor how to                                     
mitigate or prevent 

• Needed the unit                                             

quantity/d or flow/d                                                                                

(instead of concentrations) 

• Only concentrations with                                            

atmospheric/exhaled air,                                    

excreta composition  

• Possibility to monitor milk 

• Milk measured accurately as daily flow (in unit L/d) 

• Milk fat composition related to enteric CH4 ? 

• Milk urea content related to N excretion ? 

 

 

 

 

 

 



 Bionaz     & Loor  
                   (2008) 

Directing on-farm, milk fat for CH4 ? 

 Enteric CH4 emission from milk fat 
composition 

● large variation; complex of factors  

● milk fat composition regulated 

● quantitative approaches 
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Empirical approach 

Mechanistic approach 



 Indicator to be developed still 

● To be based on reliable measurements  

● Quantitative understanding/mechanism                        
needed to support empirical evidence ? 

 

 

 

 For now, rely on CH4 models  

● Choice of model dependent on aim 

● Accuracy needed depends on detail of interest, in 
particular with respect to trade-offs to N  

On-farm monitoring CH4 



Directing on-farm, milk urea for excreted N ? 

 Milk urea relationship useful (R2 ~ 0.8) over total range  

 But, unreliable within narrow range of interest 
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 Indicator N excretion 

● Milk urea content available   

● But much variation unrelated to                                       

N excretion 

● Many (animal) factors apart of N excretion         
(review Spek et al, 2012, in press) 

● Illustrative: heritability milk urea not even slightly related 
to N excretion 

 (Šebek et al., 2007; data from 26 trials, 723 cows, 15720 wk averages) 

● Only suitable indicator if influence other factors (unrelated to 

N excretion) is understood and can be ‘filtered’ out  

    

 For now, best rely on calculations of N balance  

   (feed intake and production) 

 

 

On-farm monitoring excreted N 



General conclusions 

• Large variation in CH4 emitted and N excreted per unit 
of milk produced, dependent on  

• type of diet and forage type 

• type and level supplementation 

• dry matter intake / production level 

• At least expect that CH4 and N are related and that 
trade-offs between both can be strong and (even full) 

• To become conclusive on net effects of nutrition on 
farm GHG details on CH4/kg milk matter 

• On-farm indicators to anticipate still problematic 

• further development needed for accuracy 

• for the time, just as well rely on calculation methods 



derived from  
Dijkstra et al (2007) 

      for research &         
     experimentation 

            for inventories  
    (Tier 3) 

 for practice  
  (on farm) 
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