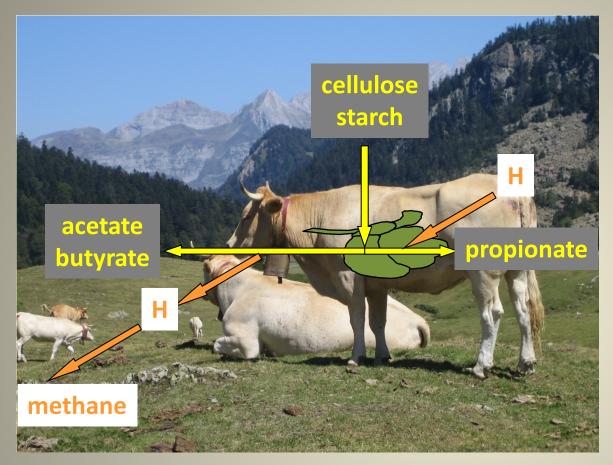


Session 40


Role of the nature of forages on methane emission in cattle

M. Doreau¹, T.T.H. Nguyen^{1,2}, H.M.G. Van der Werf², C. Martin¹

¹INRA/VetAgro Sup, Herbivores Unit, Saint-Genès Champanelle, France ²INRA/Agrocampus Ouest, Soil Agro and hydroSystem, Rennes, France

michel.doreau@clermont.inra.fr

Forages and methane emission : what is known

Methane emission is related to VFA production and pattern (acetate + butyrate) / propionate

1 kg forage produces more methane than 1 kg concentrate

1 kg maize silage should produce less methane than 1 kg grass

Differences between forages mainly depend on VFA production (i.e. on CHO degradation)

For a same VFA production, differences between green forages are moderate because differences in VFA pattern are low

Forages and methane emission : prediction

Numerous models to predict methane emission per kg dry matter for a range of diets:

Empiric equations

- With chemical composition
- With milk production
- With feed intake

Mechanistic models

Mainly mixed diets, including high-concentrate diets

A meta-analysis with forages alone (Archimède et al., 2011)

Few differences between grasses and legumes (except tannin-rich legumes)

More methane per kg dry matter with tropical forages (C4 vs C3 metabolism)

Questions

Does methane emission vary between diets differing in basal forage ?

Methane determination for diets given to productive animals (dairy cows, fattening bulls, etc)

Trial 1 – Dairy cows	Hay or maize silage in lipid-supplemented diets	
Trial 2 – Dairy cows	Grass silage or maize silage in diets differing in protein source	
Trial 3 – Young bulls	Hay or maize silage in finishing di	ets

Are differences in methane expandable to other GHG ?

LCA for evaluating the differences between forages in manure methane, nitrous oxide and carbon dioxide

Trial	3 –	Young	bulls
-------	-----	-------	-------

Hay or maize slage in finishing diets LCA for fattening phase

Trial 1

2 groups of 4 Holstein cows, each in a 4x4 Latin square design

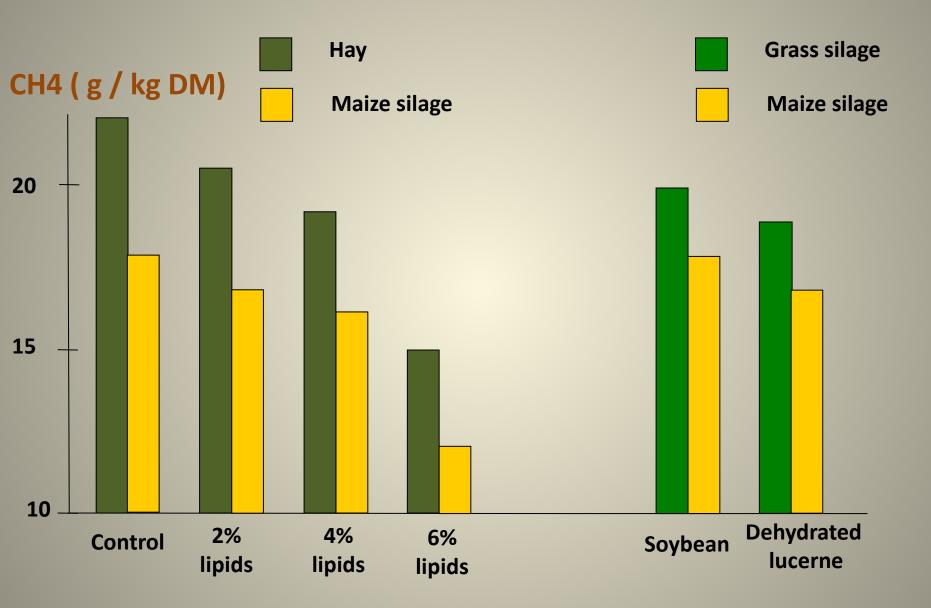
Group 1 : 50 % hay, 50 % concentrates containing 0, 2, 4, 6% lipids Group 2 : 60 % maize slage, 35 % concentrates containing 0, 2, 4, 6% lipids

Lipid source : extruded linseeds

Trial 2

8 Holstein cows in a 4x4 Latin square factorial design

Forage : 45% maize slage or 45% grass silage Protein source : soybean meal or dehydrated lucerne


In both trials

Cows fed according to their requirements Methane determination : SF6 method

Trials 1 : results

Trial 2 : results

Martin et al, 2009 and unpublished

Doreau et al, 2012 and unpublished

Trial 3 : design and methods

Blond d'Aquitaine bulls fattened from 9 to 17 months

Diet H : 45 % hay, 55 % concentrates (maize grain + soybean meal) Diet MS: 60% maize silage, 40% concentrates (maize grain + soybean meal)

Both diets meet energy and protein requirements

Methane measurements using the SF6 technique with 6 bulls

LCA for the fattening phase from cradle to farm gate using performance data obtained with 8 bulls per treatment and data for feed production available for France

Trial 3 : results

<i>g CH4 / kg DM</i> Enteric methane	Maize silage	Hay
	22.6	20.2

Not in line with trials 1 and 2 in dairy cows, but similar to

Chung et al (2011) in dry cows and Staerfl et al (2012) in bulls

Trial 3 : results

kg CO2-eq / kg weight gain	Maize silage	Нау	
Enteric methane	2.23	2.23	
Manure methane	0.90	1.16	
Nitrous oxide	0.85	0.80	
Carbon dioxide	0.73	0.92	
Total Global Warming	4.74	5.16	
Including C storage in soil	4.74	3.65 – 4.56	
			<i>Doreau et al,</i> 2011
Eutrophication	higher	lower	
Acidification	higher	lower	Nauvon ot al
Energy demand Land occupation	lower lower	higher higher	Nguyen et al, 2012

Conclusions

Present knowledge does not provide evidence for a lower methane emission with maize silage in any case

• Need for additional research with diets differing in basal forage

Interest of a global approach for all GHG (at least)