

## Innovation in animal feeding

A key driver in the concept of sustainable precision livestock farming

Leo den Hartog<sup>1,2</sup> and Reinder Sijtsma<sup>1</sup>

<sup>1</sup> Nutreco R&D, Quality Affairs and Sustainability

<sup>2</sup> Wageningen University

Leo.den.Hartog@nutreco.com

feeding the future

## Increase in meat demand (2009-11 – 2021)

- In 2022 we need to produce 20 million tonnes more meat than we did in 2009/11
- Growth in developing countries will capture 82% of the additional global consumption.





Source: OECD and FAO Secretariats.



## Supplies remain tight and prices volatile





## Water: we need more crop per drop





# Required growth in agriculture, to feed the growing global population:

|                                                        | 2050   |
|--------------------------------------------------------|--------|
| <ul> <li>Expansion of worldwide arable land</li> </ul> | + 9 %  |
| <ul> <li>Increase in cropping intensity</li> </ul>     | + 14 % |
| Yield increase                                         | + 77 % |



### A time for change



Agricultural production needs to increase by 60% over the next 40 years to meet the rising demand for food



Total arable land is projected to increase by only 69 Mha (less than 5 %) by 2050





Additional production will have to come from *increased productivity* 



## Doubling food production, while halving footprint



Empower farmers to reach the full potential of their animals



## Improvement still possible.....

Genetic potential fattening pigs



Nutrient utilisation



Source: Nutreco, 2010 Compilation of data

3 Nutrient digestibility

Digestibility of organic matter on 14 different pig farms

| BW (kg) | Digestibility (%) |
|---------|-------------------|
| 40      | 77 – 84           |
| 70      | <i>78 – 86</i>    |

## Animal feeding is an essential link





## Animal feeding is an essential link

Resources

Animal products

Struggling supplies

**Demands** 

Government policies

**Emissions** 

Consumers & society

**Profits** 

**Towards Sustainable Precision Livestock Farming** 



## A lot of progress – but also much variation

| In productivity (NL)                           | 25% worst | 25% best |
|------------------------------------------------|-----------|----------|
| <ul><li>Raised piglets per sow/yr</li></ul>    | 23,9      | 29,9     |
| <ul> <li>Feed conversion swine</li> </ul>      | 2,87      | 2,44     |
| <ul> <li>Milk production per cow/yr</li> </ul> | 6620      | 9640     |



• If the average milk production would be like NL, milk production would **triple** 







## Today's dairy farming in % of 1960's

#### Per kg of milk:

- 10% of land
- 21% of animals
- 23% of feed
- 35% of water

#### Emissions per kg of milk:

- 24% of manure
- 37% of CO<sub>2</sub>
- 43% of methane







## Efficiency decreases the environmental footprint





#### Strategies to reduce nutrient excretion & emission

#### Improving nutrient digestibility and availability

- Feed manufacturing technology
- Choice of feed materials
- Feed additives
  - Feed enzymes
  - Organic trace elements
  - Dietary stabilisers of enteric microflora
  - Rumen enhancers
- Plant breeding





#### Research focus areas



sets life performance



5. Environmental Footprint



7.Beef nutrition & product quality



4.Transition

## Vision development transition specialties dairy cows



Time post partum



### Mainstream technologies to bring the changes

#### **Applied technologies**



(Gen)omics: Radical changes



Micro systemand Nanotechnology: Radical changes



Information and Communication Technology:
Continuous changes

Implementation in animal production will follow same dynamics



#### Consumer acceptance



### 95% of consumers are food buyers

- Food produced by modern agriculture
- Neutral or supportive of using efficiencyenhancing technologies to grow food





#### 4% are lifestyle buyers

- Ethnicity and vegetarianism, organic, local and Fair Trade
- Money is not a factor



# The future of animal feeding: a change in business model is required



#### **Old model**

- Maximise productivity
- Food security
- Productivity & Rationalisation



#### **Current model**

- Optimise profitability
- Efficiency





- Optimise sustainable profitability
- Balance: Economy, ecology & society



Sustainable

Precision

Livestock

**Farming** 

