Combining approaches for the analysis of the genetic structure of the Avileña-Negra Ibérica beef cattle breed

Martín Collado, D., Abraham, K.J., Toro, M.A., Carabaño, M.J., Rodriguez, S.T., & Diaz, C.

63rd Annual EAAP Meeting Session 42. Genetics free communications Bratislava, Slovakia. 27-31 August, 2012.

Introduction. Study motivation

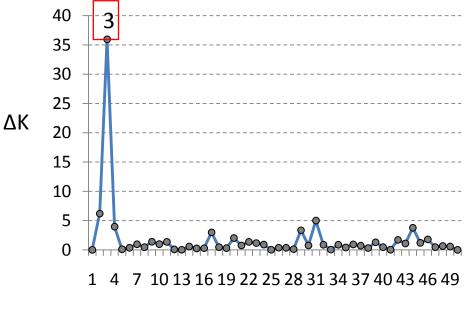
- Avileña-Negra Ibérica (ANI) is under a selection program since 1990.
- Genomic selection could be a potential tool to be used in a context of a multibreed Spanish evaluation.
- ANI breed is involved in GWAS.
- Population stratification has raised concerns in genomic selection (Deckers 2007) and GWAS (Price et al. 2006, 2011).
- Sample of herds for deep phenotyping. Random?

Determine if there is a hidden structure in the Avileña-Negra Ibérica breed.

Data

- ANI production system is fully extensive.
- Since 2005 ANI association has made a great effort to assess pedigree using a panel of 17 microsatellites.
- As a result we have a database of 13343 individuals from 59 herds.

Microsatellites	n of alleles	H Obs	Н Ехр	
BM1818	9	0.626	0.654	
BM1824	6	0.680	0.717	
BM2113	11	0.817	0.852	
CSRM60	10 0.643		0.689	
ETH3	10	0.717	0.747	
ETH10	9	0.690	0.721	
ETH185	13	0.706	0.727	
ETH225	8	0.731	0.762	
ILSTS006	12	0.790	0.836	
INRA005	5	0.643	0.661	
INRA023	11	0.741	0.765	
INRA063	6	0.557	0.577	
SPS115	8	0.374	0.387	
TGLA53	18	0.781	0.811	
TGLA122	22	0.831	0.858	
TGLA126	8	0.684	0.726	
TGLA227	13	0.803	0.830	


- None in H-W equilibrium
- Population stratification?

Methods. Tools to infer population structure

- We used three tools to infer the population structure: There are two main approaches to infer population structure:
- 1. Model based: STRUCTURE software (Pritchard et al. 2000).
- 2. Distance based.
 - Based on maximazing Nei's distance (Rodriguez-Ramilo et al. 2009).
 - Based on graphical clustering algorithm (K.J. Abraham and Rohan Fernando 2012)

STRUCTURE (Pritchard et al. 2000)

 We used Evanno et al. (2005) criterion to determine the number of clusters (subpopulations).

 $\Delta K = m(|L(K+1) - 2L(K) + L(K-1)|)/std[L(K)]$

- We found H-W equilibrium in:
- 1. Cluster 1 (n=3077): 12 microsatellites
- 2. Cluster 2 (n=6055): 4 microsatellites
- 3. Cluster 3 (n=4211): 7 microsatellites

Nei's distance maximizing method (Rodriguez-Ramilo et al. 2009)

- We tried from 2 to 5 clusters
- It divided the population in clusters of similar sizes

	2 clusters				
	Cluster 1	uster 1 Cluster 2			
N	6670	6673			
H-W	1 micro	1 micro			

	3 clusters		
	Cluster 1	Cluster 2	Cluster 3
Ν	4569	4375	4399
H-W	1 micro	2 micros	2 micros

This approach does not identify any structure

Graphical clustering: molecular coancestry (K.J. Abraham and Rohan Fernando 2012)

It was developed by J.K.Abraham to identify gene networks and it is being

adapted to study the population structure.

- It has two steps:
 - 1. To identify the individuals that will be nodes of the clusters.
 - 2. Clusters construction: Aggregating individuals to each of the nodes.
- Key points:
 - 1. Determine the threshold to find the nodes.
 - 2. Determine the threshold to aggregate individuals.

Graphical clustering. Identification of cluster nodes

- Nodes are individuals that have:
 - A minimum coancestry (provided a threshold) among them.
 - A maximum average coancestry with the rest of the population.

• We used 150 sweeps per

threshold.

We used several thresholds.

Nº of	Molecular coancestry treshold for identifying clusters nodes						
nodes	0,147	0,162	0,177	0,191	0,201	0,221	0,235
2	18%	1%	4%				
3	68%	43%	42%				
4	14%	55%	47%	3%			
5		1%	7%	25%			
6			1%	45%	4%		
7				24%	26%		
8				5%	34%	2%	
9					26%	7%	
10					5%	11%	
11					4%	25%	1%
12					1%	28%	2%
13						18%	5%
14						8%	11%
15						1%	21%
16						1%	21%
17							20%
18							9%
19							7%
20							2%

Graphical clustering. Aggregating individuals

- The key point is to define the threshold that determines the minimum coancestry value to aggregate individuals to a cluster.
- An individual will be aggregated iff his coancestry with all individuals previously allocated into the cluster is above the threshold. ⁽³⁾
- We tried for the case of 3 clusters (similar to STRUCTURE) and we used:
 - an aggregation threshold of 0.184.
 - 150 sweeps.
- Animals were assigned to a cluster in two steps:
 - When they appear at least in 10% of the sweeps associated to a node.
 - The posterior probability of being associated to a node was the highest.

Graphical clustering. Aggregating individuals

- The clusters built were:
- 1. Cluster 1 (n=2807): H-W in 5 microsatellites
- 2. Cluster 2 (n=2324): H-W in 5 microsatellites
- 3. Cluster 3 (n=921): H-W in 11 microsatellites
- Independent individuals according to the aggregating threshold (n=7363): no H-W.

f _{ij}	Cluster 1	Cluster 2	Cluster 3	Group of indep.
Cluster 1	0,3301			
Cluster 2	0,3157	0,3337		
Cluster 3	0,3156	0,3175	0,3366	
Group of indep.	0,2746	0,2741	0,2723	0,246

Conclusions

- Very preliminary results.
- It seems that the proposed method is a good way to infer population structure in a population of related individuals.
- This method determines the population structure in a fast way.
- Up to now results suggest that ANI breed population may be stratified in three subpopulations, leaving a set of individuals that cannot be assigned to any of the subpopulations.

Acknowledgements

- J.K.Abraham wish to acknowledge CAPE-Brazil for its funding.
- D. Martín-Collado is funded by MAGRAMA-FEAGAS.
- Avileña-Negra Ibérica Association has provided the genotype information.
- J. Fernández for his useful comments

FONDO EUROPE O DE DESARROLLO REGIONAL