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Genome Wide Association Studies 

Large research interest in GWAS 

Current methods 

•  Classical – single SNP analyses (e.g., Tassel, Wombat) 
•  BayesX - joint SNPs analysis (e.g., Gensel)  

Limitations in current methods 

•  Simple models 
•  Single trait 
•  Slow if not optimized 
•  Complicated if not all animals genotyped 

 



Single-step GBLUP 

•  BLUP with combined pedigree-genomic relationship 
matrix (Aguilar et al., 2010; Christiansen et al., 2010) 

•  Works with any model, any number of traits, and 
combination of genotyped and ungenotyped animals 

•  Can ssGBLUP be adapted for GWAS? 
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Useful formulas 
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SNP 
effects Conversion from SNP effects 

To GEBV 

Genomic relationship matrix 

Estimate of SNP variance  
(Zhang et al., 2010) 

Conversion from GEBV to  
SNP effects (VanRaden, 2008; 
Stranden and Garrick, 2010) 



Plots and accuracies in Zhang et al. (2010) 

historical generations for all loci with a mutation rate of 1.2561023

per locus, per generation, and per animal. Under the mutation-drift
equilibrium model, the expected heterozygosity when the popula-
tion reaches equilibrium is He~4Neu=(1z4Neu)M, where Ne is
the effective population size and u is the mutation rate [33].
Therefore, the proposed mutation rate gave an expected heterozy-

gosity of 0.5. For each new mutation on the same locus, a unique
allele was created and coded with a new number sequentially
starting from 2. In generation 0, recoding of alleles was
implemented to obtain bi-allelic SNP markers. For each locus, the
allele that had a frequency closest to 0.5 was recoded as 1, while all
other alleles were recoded as 2 following Solberg et al. [34] while
differing from the rule used by Meuwissen et al. [1], in which only
part of the putative loci were polymorphic and available for data
analysis. The distribution of minor allele frequencies of our
simulated data can be seen in Figure 2.

For each individual from generation 1 to 6, a true breeding
value (TBV) was simulated by summing up all true QTL genotypic
values, i.e.,

Pm
i~1Ziai, where ai is the allele substitution effect of

the ith QTL, and Zi is 0, 1, or 21 corresponding to genotypes 12,
22 and 11, respectively. In our standard scenario, 50 QTL were
randomly selected from the 4,995 putative QTL. For each true
QTL, the allele substitution effect ai was drawn from a gamma
distribution with the shape parameter b~0:4 and scale parameter
a~1:66. The allele substitution effect ai sampled from a gamma
distribution may be positive or negative with equal probability,
following Meuwissen et al. [1].

The total genetic variance was computed as the sum of
variances across all QTL with the assumption of no correlation
between QTL. The simulated additive genetic variance of each

Figure 2. The typical distribution of minor allele frequency of
the simulated genotypic data.
doi:10.1371/journal.pone.0012648.g002

Figure 3. True and estimated QTL effects from a randomly selected replicate. Panel A shows the absolute values of the simulated true QTL
effects throughout the simulated genome. Panel B shows the absolute estimates of the marker effects throughout the genome use the BayesB
approach. Panel C shows the absolute estimates of the marker effects throughout the genome use the RRBLUP approach. There were 50 true QTL
and 5,000 markers. Beware of the scale difference in panel C.
doi:10.1371/journal.pone.0012648.g003
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simulation 

BayesB 
Acc 0.83 

Weighted RRGBLUP 
Acc 0.75 



   GWAS under ssGBLUP  

1.  t=0; D(t)=I; 

2.  Compute       by ssGBLUP 

3.  t=t+1;   

4.                           

5.  Normalize  

6.    

7.   Loop to step 2 or 3  
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Summary

A common problem for genome-wide association analysis (GWAS) is lack of power for detection of quantitative
trait loci (QTLs) and precision for fine mapping. Here, we present a statistical method, termed single-step
GBLUP (ssGBLUP), which increases both power and precision without increasing genotyping costs by taking
advantage of phenotypes from other related and unrelated subjects. The procedure achieves these goals by
blending traditional pedigree relationships with those derived from genetic markers, and by conversion of
estimated breeding values (EBVs) to marker effects and weights. Additionally, the application of mixed model
approaches allow for both simple and complex analyses that involve multiple traits and confounding factors,
such as environmental, epigenetic or maternal environmental effects. Efficiency of the method was examined
using simulations with 15 800 subjects, of which 1500 were genotyped. Thirty QTLs were simulated across
genome and assumed heritability was 0.5. Comparisons included ssGBLUP applied directly to phenotypes,
BayesB and classical GWAS (CGWAS) with deregressed proofs. An average accuracy of prediction 0.89 was
obtained by ssGBLUP after one iteration, which was 0.01 higher than by BayesB. Power and precision for
GWAS applications were evaluated by the correlation between true QTL effects and the sum ofm adjacent single
nucleotide polymorphism (SNP) effects. The highest correlations were 0.82 and 0.74 for ssGBLUP and CGWAS
with m=8, and 0.83 for BayesB with m=16. Standard deviations of the correlations across replicates were
several times higher in BayesB than in ssGBLUP. The ssGBLUP method with marker weights is faster, more
accurate and easier to implement for GWAS applications without computing pseudo-data.

1. Introduction

As a result of commercial availability of highly dense
single nucleotide polymorphism (SNP) chips in
humans, genome-wide association analysis (GWAS)
has proven to be a powerful tool to identify genes for
common diseases and complex traits (Hirschhorn &
Daly, 2005; Visscher et al., 2007). Similarly, GWAS
has been applied to animals for the discovery of genes
that are associated with disease and production traits
(Karlsson et al., 2007; Bennett et al., 2010; Bolormaa
et al., 2010; Orr et al., 2010; Pryce et al., 2010). In
animal breeding, a closely related procedure that
makes use of the same SNP chips, but for an entirely
different purpose, is the genomic estimation of

breeding values (GEBVs) for genomic selection
(GWMAS), a form of marker-assisted selection.
GWMAS is often performed with procedures called
BayesA or BayesB that consider all genetic associa-
tions derived from markers (Meuwissen et al., 2001).
Moreover, BayesA and BayesB solutions provide
SNP effects ; thus, these methods can be applied to
GWAS (Goddard & Hayes, 2009; Sun et al., 2011)
with the additional advantage of accounting for popu-
lation stratification and cryptic relatedness (Sillanpaa,
2011). The classical GWAS (CGWAS) is based on a
test of a single marker, which treats each SNP marker
as a covariate in the model (Hirschhorn & Daly,
2005). The main advantage of CGWAS is the ease of
significance testing; however, it is likely to result in
reduced fit to the data compared with methods where
all SNPs are jointly considered. Additionally, neither
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Comparisons by simulations 
(Wang et al., 2012) 

•  Data 

•  15,800 individuals in 5 generations 
•  1500 genotyped 
•  3k SNP in 2 chromosomes 
 

•  Methods 

•  Classical GWAS  - Wombat (Meyer & Tier, 2012) 
•  Degressed proofs 

•  BayesB - GenSel (Habier et al., 2011) 
•  Degressed proofs (c=0.1), 100k rounds 

•  ssGBLUP -  iterations on SNP and on GEBV 



MANHANTTAN PLOTS  

Wombat 



BayesB (weighted DP) 

 



ssGBLUP / SNP (it3) 

 



ssGBLUP / GEBV (it3) 

 



RESULTS (Simulated data : GEBVs) 



Correlations between QTLs and 
clusters of SNP effects -ssGBLUP 

SS/SNP 

SS/GEBV 



Correlations between QTLs and 
clusters of SNP effects –BayesB & 
Wombat 



Field data set 
Data 
          Body weight in broiler chicken at 6 weeks 

 N=275k ; Ng=4500, 40K SNP (after edits) 

 6 generations   

Model for ssGBLUP:    
•  : fixed effects (sex, contemporary group) 
•  : maternal environment effects 
•  : animal effects  

 



Models of Classical GWAS and BayesB: 

 Classical GWAS:!!!!="#∗+$%+&'+(  
•  Wombat (Meyer & Tier, 2012) 
•  y : phenotypic records 
•  #∗!: sex, CG, and single snp marker 

 

 BayesB:   !=1)+&*+(  
•  GenSel (Habier et al., 2011) 
•  +: a vector of SNP markers 
•  y : 

•  NDP:  non-weighted degressed proofs 
•  WDP:  weighted degressed proofs (c=0.1) 

•      t = 51, 000 (first 1,000 as burn-in) 
•      ,=0.9 



ssGBLUP – iterations on SNP only 

it1 

it5 

it3 

Sliding window n=10 



ssGBLUP – iterations on SNP and GEBV 

it1 

it5 

it3 

Sliding window n=10 



 

Classical GWAS  

 

 

 
 
 
BayesB 

Sliding window n=10 



Comparison of Three Methods: 

ssGBLUP 
Iterations on SNP (it5) 

Classical GWAS 

BayesB  



Ranking of SNP regions in ssGBLUP 
during iteration 

it1 it2 it3 it4 it5 it6 it7 it8 it2 it3 it4 it5 it6 it7 it8
1 1 1 1 1 1 2 2 1 1 1 1 1 1 2
2 3 3 3 2 2 1 1 9 351 351 479 489 492 493
3 2 2 2 4 5 10 14 6 256 256 472 570 610 617
4 12 21 32 36 46 57 65 2 72 72 100 106 98 98
5 4 4 4 3 3 3 3 16 3 3 2 2 2 1
6 9 11 14 14 17 13 12 20 575 575 766 840 857 863

SNP                                   SNP+GEBV 

Regions of 20 SNP  



SS/SNP(3) chr Var SS/EBV(3) wombat BayesB
1 27 2.5% 1 6 1
2 6 1.3% 62 1 2
3 6 0.9% 110 2 3
4 6 0.8% 8 3 40
5 10 0.7% 54 59 93
6 5 0.6% 16 423 8
7 2 0.6% 57 32 9
8 1 0.5% 21 76 23
9 4 0.5% 105 450 7
10 12 0.5% 13 357 31



BayesB chr Var SS/SNP(3)SS/EBV(3) wombat
1 27 23.1% 1 1 6
2 6 2.3% 2 62 1
3 6 1.9% 3 110 2
4 11 1.4% 15 31 279
5 2 1.0% 42 63 656
6 3 1.0% 144 166 11
7 4 0.7% 9 105 450
8 5 0.7% 6 16 423
9 2 0.6% 7 57 32
10 2 0.5% 264 119 53



wombat chr Var SS/SNP(3) SS/EBV(3) BayesB
1 6 3.1% 2 62 2
2 6 2.9% 3 110 3
3 6 1.3% 4 8 40
4 6 1.0% 360 810 322
5 6 0.8% 278 565 27
6 27 0.8% 1 1 1
7 6 0.6% 668 1216 1646
8 7 0.5% 314 927 99
9 12 0.5% 855 925 387
10 4 0.4% 274 903 173



HapMap of 
Chromosome 6 



Realized accuracies of 
ssGBLUP/GEBV during iteration 

15 

20 

25 

30 

35 

1 2 3 4 
Round of iteration 

Weights not normalized 

Weights from training population only 

Weights from training + validation 



R2 in dairy – 1400 genotypes 
(Lino et al., 2012) 

15 

20 

25 

30 

35 

40 

45 

50 

BLUP ssGBLUP 1 ssGBLUP 2 ssGBLUP 3 

Milk 
Fat% 
Prot% 



ssGBLUP/SNP for Heat Stress in 
Holsteins  (Aguilar, 2011) 

Multiple-Trait Test-Day model, heat stress as random regression 

•  ~ 90 millions records, ~ 9 millions pedigrees 
•  ~ 3,800 genotyped bulls 

Computing time 

•  Complete evaluation ~ 16 h 

Regular effect  -first parity Heat stress effect – first parity 
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Renumbering!
RENUMF90'

BLUP!in!memory!
BLUPF90'

Variance!component!esBmaBon!
REMLF90'AIREMLF90'
GIBBS2F90'THRGIBBS2F90'''

BLUP!–!iteraBon!on!data!
BLUP90IODF'
CBLUP90IOD'

Approximate!accuracies!
ACCF90'

Sample!analysis!
POSTGIBBSF90'

CompuBng!of!extra!matrices!
PreGSF90'

GEBV!to!SNP!conversions!
GWAS!
PostGSF90'PredicBons!via!SNP!

PredGSF90'



Issues   

•  Alternative sampling of SNP variances (Sun et 

al., 2011) 

•  Significance testing 

•  Multiple trait models with large QTL/regions for 

some traits 

•  Maximum  number of genotypes 



CONCLUSIONS   
•  ssGBLUP for GWAS:  

•  Simple and Fast 
•  Applicable to any model 

•  ssGBLUP/SNP 

•  Optimal if no large SNP effects 
•  Applicable to multiple traits 

 

•  ssGBLUP/GEBV 

•  1-2 rounds enough 
•  useful for more accurate GEBV if major SNP 

•  Large potential for research 
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