Effect of linkage disequilibrium, haplotypes and family relations on reliability of genomic prediction

Yvonne Wientjes (yvonne.wientjes@wur.nl)Roel Veerkamp30 August, 2012Mario CalusEAAP, Bratislava, Slovakia

Acknowledgements

Discussions:

- Chris Schrooten (CRV B.V.)
- Henk Bovenhuis (WUR)

Financial support of

Introduction

Genomic selection

Reliability of genomic prediction

Reliability of genomic breeding values due to:

• Linkage disequilibrium between SNP and QTL (LD)

• Meuwissen et al. (2001); Habier et al. (2007); Solberg et al. (2008); Habier et al. (2010)

• Family relationships

• Fernando (1998); Habier et al. (2007); Gianola et al. (2009); Habier et al. (2010)

Aim of this study

To investigate the **effects of LD** and **family relationships** on **reliability** of genomic prediction

Materials & Methods

Reference population

529 cows

- The Netherlands
- 35,002 SNPs
- Family relationships
 - 117 Parent-offspring relations
 - 48 Full-sib families, on average 2.27 animals
 - 69 paternal half-sib families, on average 7.23 animals
 - 65 maternal half-sib families, on average 2.65 animals

Selection candidates

- Simulate selection candidates
 - Four scenarios: FREQ, LD, HAP, FAM
 - 529 animals per scenario
- Information used from the reference population to simulate selection candidates:

	Allele frequencies	LD-pattern	Haplotypes	Family relationships
FREQ	X			
LD	X	X		
НАР	X	X	X	
FAM	X	X	X	X

Methods to predict reliability

VanRaden	Daetwyler <i>et al.</i>
(2008)	(2008; 2010)
G-BLUP	G-BLUP
Reliability per individual	Mean reliability of population
Selection index	Population
theory	parameters

Formula of VanRaden (2008)

$$r^{2} = \mathbf{C} \mathbf{G} + \mathbf{I} \left(\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} \right) \Big]^{-1} \mathbf{C}'$$

- G → Genomic relationship matrix of the **reference** population
- c → Genomic relationship vector between reference individuals and one selection candidate

Formula of Daetwyler et al. (2008; 2010)

$$r^{2} = \frac{N_{p}h^{2}}{N_{p}h^{2} + M_{e}} \longrightarrow M_{e} = \frac{1}{Var(C + A)}$$

Relationship matrix between **reference individuals** and **all selection candidates**:

- $C \rightarrow Genomic$
- $A \rightarrow Additive genetic$

Results

Reliability per scenario – VanRaden (2008)

Heritability of 0.6

Reliability per scenario – VanRaden (2008)

Reliability per scenario – VanRaden (2008)

Heritability of 0.6

Comparison of reliability from two formulas

h ²	Scenario	M _e	VanRaden (2008)	Daetwyler <i>et al. (</i> 2008)		
0.6	FREQ	122,116	0.002	0.003		
0.6	LD	16,292	0.015	0.019		
0.6	HAP	2,064	0.102	0.133		
0.6	FAM	837	0.318	0.275		
				Z		
0.1	FREQ	122,116	0.0004	0.0004		
0.1	LD	16,292	0.003	0.003		
0.1	HAP	2,064	0.021	0.025		
0.1	FAM	837	0.104	0.059		

Conclusion

Conclusion

Reliability of genomic prediction:

h^2	Scenario	V	anRader		Daetwyler al. (2018)	et
0.6	FREQ		0.002		0.003	
0.6	LD		0.015		0.019	
0.6	HAP		0.102		0.133	
0.6	FAM		0.318		0.275	
				\sim		
0.1	FREQ		0.0004		0.0004	
0.1	LD		0.003		0.003	
0.1	HAP		0.021		0.025	
0.1	FAM		0.104		0.059	

- Family relationships contribute more than linkage disequilibrium per se
- Effect of accumulated length of shared haplotypes > length of individual haplotypes shared
- Can be predicted accurately with prediction formula using *M_e* based on genomic and additive genetic relationship matrices for populations with complex family structures

Thanks! Questions?

Conclusion

Reliability of genomic prediction:

h^2	Scenario	V	anRaden		Dae <i>al</i> .	twyler	et)
0.6	FREQ		0.002			0.003	
0.6	LD		0.015			0.019	
0.6	HAP		0.102			0.133	
0.6	FAM		0.318			0.275	
				$(\approx$	2		
0.1	FREQ		0.0004			0.0004	
0.1	LD		0.003	1		0.003	Τ
0.1	HAP		0.021		1	0.025	/
0.1	FAM		0.104			0.059	

- Family relationships contribute more than linkage disequilibrium per se
- Effect of accumulated length of shared haplotypes > length of individual haplotypes shared
- Can be predicted accurately with prediction formula using *M_e* based on genomic and additive genetic relationship matrices for populations with complex family structures

