

How the transition to free farrowing systems might work

Johannes Baumgartner Institute for Animal Husbandry and Animal Welfare University of Veterinary Medicine Vienna

Free Farrowing Workshop Vienna 2011

- 32 experts from CH, CZ, DE, DK, NL, NO, SE, UK, AT
 - Discussed options, obstacles and questions regarding free farrowing systems
 - Piglet survival as key factor

www.vu-wien.ac.at/institute-of-animal-husbandry-and-animal-welfare/infoservices/free-farrowing2

Background

Crates predominant farrowing environment

- reduction of investment and labour costs
- acceptable piglet mortality although litter size increased
- robust to different staff, management and breeds
- \rightarrow supported industrialisation of piglet production

Why free farrowing ?

- Farrowing crate is a welfare issue for the sow
 - Restriction in movement
 - Restriction in nest building, eliminative behaviour, thermoregulation and contact to offspring
 - Higher risk for shoulder ulcers, teat lesions
 Verhovsek (2005), Baumgartner (2009), Bonde (2009)
- Piglet mortality remains a welfare & economic concern
 - Higher prevalence of piglet crushing
 - Challenges will increase with greater prolificacy of sows
- There is growing evidence that non-crate farrowing systems can deliver acceptable piglet survival whilst improving sow welfare (Spoolder et al. 2011)

	Weber et al. (2007)	Pen size	Losses	
		(m²)	total	crushed
	Blackshaw et al. (1994)	3.9	77	NN
	Mardarowicz (2000)	4.4	→	no info
≤ 5 m²	Haus Düsse (1995-96)	4.6 4.4	7 7	ת א
	Kamphues (2004)	5.0	7	7
> 5 m²	Stabenow (2001)	6.0	→	→
	Fritsche and Kempkens (1999)	6.5	Ы	no info
	Arkenau et al. (1999)	7.0	→	7
	Hessel et al. (2000)	7.0	→	7
	Schmid and Weber (1992)	7.0	→	7
	Weber and Schick (1996)	7.3 7.0	\rightarrow \rightarrow	ת א
	Cronin et al. (2000)	7.2	→	no info
	Anonymous (1999)	7.6 7.8	(۲) (ح	no info
	Hofstetter (1998)	5.3 - 8.1	→ - 7	7
	Steiner (2001)	>6.5	7	7
	Weber et al. (2007) 482 / 173 farms	5.1 - 12.2	→	7

7 = increased / \rightarrow = unchanged / \checkmark = decreased in free farrowing

Liveborn piglet mortality

Range from 12,6 – 17,2

FFWV_2011

Legislation in Europe

EU

- Farrowing crate allowed (2008/120/EC)
- Organic farming: Farrowing pen (7.5 m²) + outdoor run (2.5 m²) (EG 889/2008)
- CH, NOR, SE
 - Ban of farrowing crate, permission in exceptional cases (lameness, aggression)
- DK, NL, UK
 - market driven/voluntary development towards free farrowing
- Austria (1. THVO; since 03/2012)
 - As of 2033: Farrowing pen of ≥5.5 m² which allow sows to move around
 - Crating of sows during "critical period of piglets" allowed

- Good scientific agreement on the principles that make free farrowing systems work (see Baxter et al. 2011)
 - Adequate space (>7.0 m²) and dimensions
 - Functional areas (nest / dunging / creep)
 - Solid floor and sloping walls
 - Nesting material prefarrowing
 - Suitable climate
- However, the robustness of systems
 has to be demonstrated in large scale studies (FFWV_2011)

Free farrowing pen - simple

Free farrowing pen - designed

Pen with temporary crating

- Temporary crating may be an intermediate step towards free farrowing
 - Fixation of sow for 3-4 days after farrowing (Moustsen et al., 2012)

Pen with outdoor run

What makes a good mother?

Direct maternal effects

- Placental efficiency
- Udder quality (milk yield, number & accessability of teats) Visdal & Andersen, 2011
- Mobility, 'fundament'
- Fitness, longevity
- ...

Good maternal behaviour

- Social competence and stress restistence
- Adequate nest building activity
- Lateral lying without posture changes during parturition
- Careful when lying down and changing lying posture
- No fearfulness related to offspring (no savaging)
- Responsiveness to screams during crushing
- Passivity to a stockperson

Spoolder et al., 2012 Wechsler & Weber, 2007 Baxter *et al*., 2011 Damm *et al*., 2005

Illmann et al., 2007

Different sows for different farrowing systems?

Probably yes!

- Heritability for behavioural traits is low
 0.03 to 0.06 for crushing (Grandinson et al., 2002; Gäde et al., 2008)
- Farrowing crate 'masks' mothering ability more natural environment would makes 'bad' mothers more visible
- Estimation of genetic parameters under conditions in which animals will be kept (Roehe et al. 2009)
- Available data set is limited and data quality is expected to be poor

What makes a vital piglet / litter?

- 'Optimal' birth weight
- Low within litter birth weight variability
- High thermoregulative capacity
- Short time to suckle after birth
- High attendiveness to sow behaviour

Piglet survival factors (Baxter et al.)

Vs.

Physiology

Higher Birth Weight (1520g) Higher 24h Weight (1628g) Higher Birth Temp (37.74°C) Higher 2h Temp (38.00°C) Higher 24h Temp (38.55°C)

Behaviour

Quicker to udder (17mins) Quicker to teat (24mins) Quicker to suckle (33mins)

<u>Vigour</u>

Higher vitality score (2.28) Higher rooting response (1.42m) Dies pre-weaning

<u>Physiology</u>

Lower Birth Weight (1289g)	
Lower 24h Weight (1326g)	
Lower Birth Temp (37.13 °C)	
Lower 2h Temp (37.57 °C)	
Lower 24h Temp (37.56 °C)	

<u>Behaviour</u>

Slower to udder (25mins)	
Slower to teat (38mins)	
Slower to suckle (51mins)	

<u>Vigour</u>

Lower vitality score (1.77) Lower rooting response (0.47m)

.

From Edwards, 2011

Risk of live-born mortality of piglets associated with birth weight

(Roehe & Kalm 2000)

Litter size and mortality

Large litters pose a major welfare problem and the welfare implications for both sow and piglets of strategies to manage these by differential weaning and fostering need to be evaluated (Spoolder et al., 2011)

Different piglets for different farrowing systems?

Probably not !

- Determinants of survival not significantly different
 - Outdoor vs. indoor pen (Baxter et al., 2011)
 - Indoor pen vs. crate
 (Pedersen et al., 2011)
- Large litters more challenging in free farrowing systems compared to crates
 - Litter size negatively correlated with piglet survival traits
 - Litter quality instead of litter size as selection criteria (Brandt et al. 2012)
 - Piglets weaned per sow and year in breeding index ? (Knapp, 2011)

The human factor

- Most important factor !
- Empathy, knowledge, technical abilities (von Borell, 2012)
- Creative, innovative, motivated to work with animals (Spoolder, 2012)
- Change has to tackle farmer's attitudes & beliefs before it will take place in practice !
- Management has to be adapted
 - Farrowing, cross fostering

The transition from crates to free farrowing will be an evolutionary process, driven by some degree of ultimate urgency !

- Pen concepts robust ?
- Start selection for mothering abilities under free farrowing condition
- Improve piglet survival instead of further increase in litter size
- Change has to tackle farmer's attitudes & beliefs before it will take place in practice
- Genetics, housing and management have to be adapted at the same time
- Transition takes time and costs money

