

Improving fertility and minimizing inbreeding within the endangered pig breed 'Bunte Bentheimer'

A.D.M. Biermann, E.C.G. Pimentel, M. Tietze, and S. König

Department of Animal Breeding, University of Kassel Witzenhausen, Germany

Typical characteristics

- Middle-sized breed
- Floppy ears
- Black/white spotted
- Robust and therefore suitable for extensive production systems

- Good mothering ability
 - High fat content in the carcass
 - High backfat thickness
 - Marketable in high-prized segments

EAAP - Bratislava 2012

- Origin in North-Western Germany (amongst others <u>Bad Bentheim</u>)
- In 1900 black and white spotted pigs resulted from the crossbreed of different boars (e.g. Berkshire, Cornwall) with local Landrace sows
- 1950 official registration of the Bunte Bentheimer pig in the herd book
- Middle of the 20th century <u>changes of market requirements and the</u> <u>breeding goal</u>
 - \rightarrow high lean meat percentage
 - \rightarrow less backfat thickness
- Breeding goal did not exactly fit market requirements
- 1964: end of herd book registration
- Substantial decrease of the population size

- 1964 1987 one breeder was left (with at last 22 sows and 2 boars)
- but genetic originality could be preserved (Glodek, 1987)
- → since 1988 registration in the herd book

Distribution of herds and No. of sires Herds without sire • Herds with 1 sire • Herds with 2 sires •

- Analysis of the pedigree (1540 individuals)
- The active population (07.04.2012) contains 333 in the herd book registered animals

Inbred animals (%)	98.5
F (%)	11.30
Average relationships	25.53

- Currently no genetic evaluation is practiced!
- Selection based on phenotypes of
 - number of piglets born alive (NBA)
 - number of piglets weaned (NW)
- No other records!

Conception of a 'first' breeding goal

• Considering relationships and female fertility

<u>Control of inbreeding</u> and simultaneously <u>maximize genetic gain</u> in <u>fertility</u>

- <u>Optimum genetic contribution</u> theory (OGC)
- \rightarrow implemented in GENCONT (*Meuwissen, 2002*)
- \rightarrow selection of sires and dams with their optimal mating frequencies
- <u>Specific mating designs</u> using the simulated annealing algorithm based on the GENCONT output
 - MATE (Sonesson and Meuwissen,2000)
 - \rightarrow artificial insemination is assumed
 - \rightarrow mating within the whole country
 - **ns-MATE** (*own modified simulated annealing algorithm*)
 - \rightarrow <u>n</u>atural <u>s</u>ervice is assumed
 - \rightarrow mating within federal states

Genetic parameters and breeding values

1. Estimation of genetic parameters and breeding values

- DMU (Madsen and Jensen, 2000)
- 3008 records of NBA and NW (1985-2012)
- Pedigree
- Using a bivariate animal model and AI-REML
- EBV were standardized to a mean of 100 and standard deviation of 20

$$y_{ijklm} = \mu + p_i + h_j + g_k + a_l + s_m + pe_l + \beta a_{li} + e_{ijklm}$$

Yijklm	= observation of the trait
μ	= overall mean
p_i	= fixed effect of parity <i>i</i>
h _i	= fixed effect of herd <i>j</i>
g_k	= fixed effect of year k
a_l	= random additive genetic effect of sow l
S _m	= random genetic effect of piglet sire <i>m</i>
pe_l	= random permanent environment effect of sow l
βa _{li}	= regression on the age of sow l at parity i
e _{ijklm}	= random residual term

	Number born alive	Number weaned			
Number born alive	0.12	0.96			
Number weaned		0.12			
σ_a^2	0.61 (0.22)	0.56 (0.20)			
σ_s^2	0.13 (0.07)	0.16 (0.08)			
σ_p^{-2}	0.25 (0.15)	0.08 (0.13)			
σ_e^{2}	4.08 (0.14)	4.00 (0.13)			

- \rightarrow Heritabilities as expected
- \rightarrow High genetic correlation between NBA and NW
- \rightarrow Moderate genetic variances allow selection strategies

Optimum genetic contribution

2. Selection of sires and dams to breed the next generation

GENECONT - Input

- Pedigree
- Potential selection candidates = active population (63 sires, 270 dams)
- EBV for NBA
- Selection of 30 sows with equal contributions
- Max. contribution of a sire (10%)
- Constrained relationships (scenarios 23-27%)

GENECONT - Output

- 30 sows with equal contributions (3.33%)
- Number of sires with their optimal mating frequencies

- → Less constrained relationship → genetic value↑ and number of sires↓
 → Genetic progress increases marginally for higher relationships
- \rightarrow A compromise should be met

3. Application of specific mating designs to reduce inbreeding in the next generation

MATE / ns-MATE - Input

- GENCONT output
- relationship of every possible mate

→ test of every possible combination until the optimum is achieved
→ criterion of the optimum = average relationship among the progeny

Additive genetic relationship for matings											
	N	o. of	Mean		Minimum			Maximum			
Scenario	sires	matings NS-Mate	All	NS- Mate	Mate	All	NS- Mate	Mate	All	NS- Mate	Mate
0.23	19	23	0.208	0.151	0.159	0.000	0.000	0.000	0.636	0.227	0.215
0.24	18	10	0.215	0.179	0.167	0.000	0.058	0.000	0.665	0.229	0.227
0.25	15	23	0.220	0.175	0.178	0.000	0.000	0.000	0.665	0.228	0.233
0.26	15	25	0.227	0.180	0.188	0.000	0.000	0.000	0.665	0.228	0.233
0.27	12	25	0.232	0.191	0.197	0.000	0.000	0.000	0.665	0.293	0.247

 \rightarrow ns-MATE could not fulfill criteria of the GENCONT output due to the limited number of sires in some regions

- Genetic parameters for NBA and NW in the small endangered population reflect estimates in conventional populations
- Using OGC and specific mating designs:
 - a 'valuable tool' for constraining relationships without loosing genetic gain
- Artificial insemination is required to transfer theoretical GENCONT suggestions into practice
- The mating concept will be extended for an overall breeding goal, that additionally includes behavior and meat quality

And thanks the Federal Office for Agriculture and Food (BLE) and the Landwirtschaftliche Rentenbank for funding this project