The effect of genetic selection for socially affected traits on the rate of inbreeding: A simulation study

H.L. Khaw and P. Bijma

30 August 2012, EAAP, Bratislava

INTRODUCTION

Animal welfare

- An important issue in animal breeding industries
- Social interaction:
 - Any behavior that affects or takes into account each other's physical conditions
- Welfare problems for livestock housed in group
 - Social interaction among group mates

Animal welfare (cont.)

Size variation

Tail biting

Feather pecking

Animal breeding

Classical quantitative genetic model:
Phenotype = Genetic + Environment

- Individual with best phenotypes => positive selection response is expected
 - Traits related to behaviour => selection response not as expected
- Existence of social genetic effects

Animal breeding - social genetic effects

LR

n-1 $P_i = A_{D,i}$ \boldsymbol{E} $i \neq j$

Social genetic effect of mates

Heritable effect of an individual on the phenotype of another individual

Animal breeding - social genetic effects

- Selection for socially affected traits: accounting for direct and social effects may increase selection response
- It may also affect rate of inbreeding

To examine the effect of **BLUP selection** for **socially** affected traits on **rate of inbreeding**

BLUP = Best Linear Unbiased Prediction

METHODS

The simulation

Statistical computing program => R

Four scenarios:

Parameters	Basic	Scenario 1	Scenario 2	Scenario 3
Social phenotypic variance	Null	Mild	Intermediate	Strong
Heritabilities (Direct = Social)	0.1, 0.3, 0.5			
Correlation between direct and social (Genetic = Environment)	Null	Competitiv	e	Cooperative
		-0.8,	-0.4, 0, 0.4	l, 0.8

Population structure

20 generations

The simulation (cont.)

ASRemI-R:

y = mean + direct genetic effect + social genetic effect + random group effect + residual

- 100 replicates for each scenario and parameters combinations
- Rate of inbreeding was averaged over 100 replicates

RESULTS AND DISCUSSION

Correlation between direct and social = 0

Results (cont.)

Discussion

- In scenarios with social effects, the rate of inbreeding was greater
- At low heritability, BLUP selection favors the choice of family members which increases inbreeding
 - More weight on relatives' record => high correlation of estimated breeding values within family
- Social interactions with groups of two families increased the resemblance between relatives

Conclusion

BLUP selection for socially affected traits may increase rate of inbreeding

Take home message~

To **limit inbreeding**, especially when taking into account **Social effects**, we should apply a selection algorithm, such as **optimum contribution selection**

Thank

you

khaw.hooiling@wur.nl

or h.khaw@cgiar.org

Netherlands Organisation for Scientific Research