

gembloux agro bio tech

Bratislava, SLOVAKIA

Assessing Heat Stress Effects on Production Traits of Holsteins in a Temperate Region

st. 2012

H. Hammami^{1,2}, J. Bormann³, and N. Gengler^{1,2}

¹ Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech (GxABT), Gembloux, Belgium ² National Fund for Scientific Research (FNRS), Brussels, Belgium ³ Administration of Agricultural Technical Services (ASTA), Luxembourg, Luxembourg

Temperature humidity index

- Climate change: extreme hot waves will be seen as a real threat
- Heat stress is influenced by the combination of ambient temperature (T_{db}), relative humidity (RH), solar radiation (RAD), wind speed (WS)
- Temperature humidity index (THI) Thom, 1959

 $TI_1 = (1.8 \times T_{db} + 32)$ (0.55 0.0055 × RH) × (1.8 × T_{db} 26) NRC,1971

- Developed in empirical model
- Ignore effects of environmental parameters (RAD & WS)
- Biological (rectal temperature, sweatingõ) and cow specific differences (breed, production...) are also ignored

New thermal indices

Thermal Indices (דו)	T _{db}	RH	RAD	WS	Biological effects & cow specific differences	Developed under range of T _{db}
Equivalent Temperature Index (Baeta et al., 1987)		✓		✓	\odot	16 to 41 °C
Environmental Stress Index (Moran et al., 2001)	~	✓		✓	\odot	22 to 45 °C
Adjusted THI (Mader et al., 2006)	>	✓		\checkmark		17 to 36 °C
Heat Load Index (Gaughan et al., 2008)	~	✓		\checkmark		8 to 45 °C
Comprehensive Climate Index (Mader et al., 2010)	✓	✓	~	✓		-30 to 45 °C

New thermal indices

Thermal Indices (TI)	T _{db} RH RAD WS	Biological effects & cow specificity differences
TI1: THI (NRC, 1971)	 ✓ 	
TI2: Adjusted THI (Mader et al., 2006)		
TI3: Heat Load Index (Gaughan et al., 2008)		© ©
TI4: Equivalent temperature index (Baeta et al., 1987)	 ✓ ✓ 	\odot
TI5: Environmental Stress Index (Moran et al., 2001)	Apparent tempera	ature indices
TIG: Comprehensive Climate Index (Mader et al., 2010)		000

Objective

Evaluation of HS effects on production traits of Holsteins under a temperate environment using large field data and comprehensive TI indices as indicators of production traits losses

Data

Historical performance data (2000-2011)

- 230,192 TD milk, fat, and protein yields records
- 23,963 cows
- 604 herds
- Historical hourly meteorological data (2000-2011)
 - 14 Meteo stations
 - Tdb, RH, RAD, WS

Thermal indices

THI indices

⊂TI₁: THI

(NRC, 1971)

(Mader et al., 2006)

THI = $(1.8 \times T_{db} + 32)$ (0.55 0.0055 × RH) × $(1.8 \times T_{db} - 26)$

[~] Tl₂: Adjusted THI

THI_{adj}= 4.51 + THI (1.992 × WS) + (0.0068 × RAD)

Tl₃: Heat Load Index
 (Gaughan et al., 2008)
 HLI = 8.62 + (0.38 × RH) + (1.55 × BG)
 (0.5 × WS) + e^(2.4 WS)
 if BG> 25
 HLI = 10.66 + (0.28 × RH) + (1.3 × BG)
 WS
 if BG<=25
</p>

Apparent temperature indices

- Figure 1987)
 ETI = 27.88 Ë (0.45 × T_{db}) + (0.010754 × T_{db}²) (0.4905 × RH) + (0.00088 × RH²)
- TI₅: Environmental Stress Index (Moran et al., 2001) ESI = (0.63 × T_{db}) Ë (0.03 × RH) + (0.02 × RAD) + 0.0045 × (T_{db} × RH)Ë 0.073 × (0.1 + RAD)⁻¹
- TI₆: Comprehensive Climate Index CCI = RH_{adj} + WS_{adj} + RAD_{adj}

(Mader et al., 2010)

Daily TI : average of hourly values over 24h

The reference station was matched to each herd based on minimum distances (7.6 km)

The mean of TI over the previous 3 days before each TD was designed as TI reference for the current TD

Thresholds identification:

- Random regression TD model (no effect of HS) $y = HTD + AGS + LS + \sum \phi a + \sum \phi p + \sum \phi h_{+}e \quad Model 1$
- Broken line regression model
 y* = y Ë (HTD + AGS + LS)

8

C

$$y^* = c + \varepsilon$$
;when $x \le THR$ $y^* \quad y^* = a + \beta * x + \varepsilon$;when $x > THR$

THR

Model 2

Х

Production losses due to HS

 1- Ability of TI to detect production losses RRTD model (with effect of HS)

y = HTD + AGS + LS + $\sum \phi \beta$ + $\sum \phi_s a + \sum \phi_s p + \sum \phi_s h_+ e$

Model 3

2- Yearly production losses (y_{loss})

 $y_{loss} = \beta * \sum_{day=1}^{365} (TI_{day} \ddot{E} THR)$

 β : rate of decline and THR: the specific threshold for each TI

Thresholds

A- Milk

Least square means (LSM) for daily milk yield using different THI indices

Thresholds

1- Milk

2- Protein

LSM for daily 1) milk and 2) protein yields using different THI and Apparent temperature indices

Thresholds

3- Fat

Threholds

Thermal	THR	Other Studies	Rate of decline / unit of TI (β)			
Indices			Milk (kg)	Fat (kg)	Prot (kg)	
TI ₁	62	69 ¹ , 72 ² ,78 ³ , 80 ⁴ 60 ⁵	-0.164	-0.020	-0.013	
TI_2	64		-0.152	-0.014	-0.012	
TI_3	80		-0.123	-0.013	-0.010	
TI ₄	18		-0.146	-0.022	-0.012	
TI_5	16		-0.109	-0.023	-0.011	
TI ₆	20		-0.154	-0.021	-0.013	

¹Bouraoui et al. (2002); ² Bohmanova et al. (2007); ³ Dikmen and Hansen (2009); ⁴Bookum et al. (2011); ⁵ Brügemann et al.(2011)

Production losses

Yearly loss of milk during 2000-2011 (12-yr Average) and the year of 2003

Production losses

Fat

TI3

TI3

2003

TI4

TI4

Thermal indices

2003

Indices

TI5

TI5

TI6

TI6

Yearly loss of milk, fat and protein during 2000-2011 and the year 2003

Conclusions

Losses for production traits were confirmed

- The six TI identified lower heat stress thresholds compared to tropical, subtropical and Mediterranean regions
- Tl₂ and Tl₆ showed highest production losses

Genetic variation of heat stress tolerance should be evaluated for the six TI

Aknowledgments

Financial support via a post-doctoral fellowship

Production data

Meteorological data

Thank you for your attention

Corresponding author c-mail: hedi.hammami@ulg.ac.be

