

DO THE GENES INVOLVED IN LONGEVITY INTERACT WITH INFARM TEMPERATURE IN RABBIT FEMALES?

Sánchez J.P., Piles M.

IRTA, Mejora Genética Animal, Av. Rovira Roure 191, 25198, Lleida, Spain.

juanpablo.sanchez@irta.es

Do the genes involved in longevity interact with in farm temperature in rabbit females?

INTRODUCTION

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

ESULTS & DISCUSS

CONCLUSIONS

Raise tolerance to heat in order to keep performances not matter the temperature.

LONGEVITY is one of the traits determining farm performances: Direct Impact:

 \downarrow replacement rates, \downarrow medical treatment, shift population structure to higher producer age classes.

Indirect Impact:

Welfare, Health, Social Concerns

Do the genes involved in longevity interact with in farm temperature in rabbit females?

INTRODUCTION

OBJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIO

CONCLUSIONS

OBJECTIVE

The aim of this study was to assess the magnitude of the interaction between additive genetic effects on longevity and infarm temperature

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIC

CONCLUSIONS

HISTORICAL DATA FROM CALDES LINE

Selected for <u>GROWTH RATE</u> after Weaning

November 1983 -- October 2008

Semi-intensive Reproductive Rhythm(E(PI)=42d)

Length-of-Productive Life (LPL)

Days between first mating and death or involuntary culling

	Ν	Mean	Min.	Max.
Censored	2267 (33.6%)	213.4	12	694
Uncensored	4476 (66.4%)	112.7	11	567

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIO

CONCLUSIONS

PROPORTIONAL HAZARD ANIMAL MODELS

NULL MODEL:

 $h_{i}(t|\boldsymbol{\beta}, a_{i}) = h_{0}(t) \times \exp\{x_{i}'(t)\boldsymbol{\beta} + a_{i}\}$ $h_{0}(t): \text{Stepwise (death times) exponential function}$ $\boldsymbol{\beta}: \text{year-season (YS), physiological state (PS),}$ litter size (LS), ordinal of pregnancy (OP) $a_{i}: \text{Additive genetic effect}$ $p(\mathbf{a}) \sim MVN(\mathbf{0}, \sigma_{a}^{2} \cdot \mathbf{A})$

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIC

CONCLUSIONS

PROPORTIONAL HAZARD ANIMAL MODELS

ALTERNATIVE MODEL:

 $h_i(t|\mathbf{\beta}, \mathbf{a}_i) = h_0(t) \times \exp\{x'_i(t)\mathbf{\beta} + a_{i,1} + T(t) \times a_{i,2}\}$ $h_0(t): \text{Stepwise (death times) exponential function}$ $\mathbf{\beta}: \text{year - season (YS), physiological state (PS),}$ litter size (LS), ordinal of pregnancy (OP) $T(t): \text{ average across week of daily average T}^a$ $\mathbf{a}_i: \text{Additive genetic effects}$

$$p\begin{pmatrix}\mathbf{a}_1\\\mathbf{a}_2\end{pmatrix} \sim MVN\begin{pmatrix}\mathbf{0}\\\mathbf{0},\mathbf{G}_0\otimes\mathbf{A}\end{pmatrix}$$

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIO

CONCLUSIONS

BAYESIAN MCMC

Adaptative Rejection Samplig

- 1.- Burn-in 100K interations
- 2.- From solutions at the end of burn-in.
 100 chains (different seeds)
 20000 rounds
 100-rounds sampling interval

CALENDULA Castilla y León Supercomputational Center http://www.fcsc.es/index.php/en/

OBJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSION

CONCLUSIONS

GOODNESS-OF-FIT

NULLALTDIC4593445883

IRTA

DBJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSION

(

CONCLUSIONS

ALTERNATIVE MODEL PARAMETERS

	mean	median	SD	HPDa	HPDb	ESS
G1	2.07	2.00	0.50	1.21	3.06	322
Gcov	-0.05	-0.05	0.02	-0.10	-0.02	288
G2	0.002	0.002	0.001	0.0002	0.004	258
rho	-0.82	-0.83	0.06	-0.93	-0.70	650

DBJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSION

CONCLUSIONS

CORRELATION BETWEEN EBV

Positive slopes: When $T^a \uparrow \rightarrow$ Risk of death \uparrow : This would be expected due to the negative effect of T^a

EBV intercept

Animals with the most favorable (negative) BV get deteriorated their BV with temperature more rapidly than animlas with the worst (less negative) BV.

Temperature-Dependent-Survivalability (slope) is antagonish to survivalability defined by any other factor (intercept).

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSION

CONCLUSIONS

EFFECTIVE HERITABILITY AS FUNCTION OF T^a

BJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSION

CONCLUSIONS

GENETIC CORRELATION AS FUNCTION OF T^a

OBJECTIVE

MATERIAL & METHODS

Animals Models Methods

RESULTS & DISCUSSIO

CONCLUSIONS

- 1. High genetic variation for longevity has been estimated in this population:
 - i) Some interactions should be needed to be considered (PS x OP)
 - ii) Fitting residual terms extracts individual variation which otherwise it is assigned to be of genetic origin.
- 2. Low genetic variability is involved in the definition of Temperature-Dependent-Survivalability.

3. Temperature-Dependent-Survivalability is genetically antagonist to survivalability determinate by any other factor.

DO THE GENES INVOLVED IN LONGEVITY INTERACT WITH INFARM TEMPERATURE IN RABBIT FEMALES?

Sánchez J.P., Piles M.

IRTA, Mejora Genética Animal, Av. Rovira Roure 191, 25198, Lleida, Spain.

juanpablo.sanchez@irta.es