26/08/2013: Interbull workshop

Genomic selection: impact on the organisation of the breeding sector

le réseau de la génétique animale

Genomic Selection in Kazakhstan:

An example of a country without existing selection program Patry, C.

Fritz, S., Baur, A., Genestout, L., Tretyakov, I., Echshzhanov, T., Ducrocq, V.

France: INRA, Jouy-en-Josas, UNCEIA, Labogena - Kazakhstan: KazAgroInnovation JSC, Astana

Content

- Country situation: dairy production and animal breeding
- Project of genomic selection: the choice for female reference population
- Project implementation
- Benefits on short and long-term
- Conclusion: direct and indirect impact of GS in KZ

Agriculture in Kazakhstan

- A large country (4 times France), with a great potential: not only for energy resources but also for agriculture:
 - ⇒Crop (rank 8 for wheat exportation)
 - ⇒Good perspectives for cattle production

82% of agricultural lands

- Current situation:
 - 2 millions of cows (1/3 milk, 2/3 beef),
 - 700,000 IA (2 local AI centres, 10% imported semen)
 - Yearly milk production: about **5 million tons** per year

Dairy production

EAAP, Nantes 2013

Genomic Selection in Kazakhstan

• Why?

- Need for breeding values to evaluate imported bulls and semen in their local (KZ) environment and be able to use them (by law)
- Foreign bulls with GEBV (marketing, genetic gap)
- How?
 - The choice for genomic evaluations based on a female reference population = genotyping and phenotyping 10,000 cows in 3 to 5 years

• Challenges:

- No organized recording system
- Process of genetic evaluations to be drastically improved (almost inexistant)

A first step towards genetic improvement

EAAP, Nantes 2013

EAAP, Nantes 2013

1. Are the « French » genomic predictions relevant for cows in Kazakhstan?

- Equations developed from « French » phenotypes, while:
 - very different environmental and practices in livestock management
 - different definitions of traits
 - different ways of trait measurement
 - not the same genetic structure of the population (genetic diversity)
- Missing information: pedigree
- 2. Is the quality of the KZ phenotyping (recording system) reliable?

⇒ Correlation between observations on farm and genomic predictions?

Correlations between observations (KZ) and predictions (FRA) Contrasted a levels							
	Traits	h ² (French parameters)	Farm 1	Farm 2	Farm 3	Farm 4	
	Milk yield	~0.35	0.09	0.15	0.11	0.27	
	Fat percentage	~0.35	0.19	NA	-0.07	-0.02	
	Protein percentage	~0.35	0.14	NA	0.02	-0.14	
	Height	0.51	0.21	0.26	0.27	0.50	
	Body depth	0.36	0.11	0.09	0.19	0.32	
	Sacrum Angle	0.33	0.28	0.26	0.27	0.23	
	Hind legs side view	0.10	0.11	0.05	0.31	-0.01	
	Hoof Angle	0.10	-0.05	0.23	0.10	0.08	
i	Udder Depth	0.36	0.15	0.26	0.27	0.19	

EAAP, Nantes 2013

Consistency?

• Results:

- For some traits: somehow high correlations whereas the performances were not yet corrected for any environmental effect
- Big contrasts between farms, correlations sometimes close to zero
- ⇒ Variability of the levels in between farms, quality of the data collected? Variability of the recording practices

Lessons

- ⇒ Difficult to conclude on the relevancy of the genomic predictions according to the French equations
- ⇒ Harmonization/ improvement of the recording systems (ICAR)

EAAP, Nantes 2013

Benefits from foreign genomic predictions for cows in KZ

• On the long term: provides genotypes for the female reference population

- \Rightarrow However, it is a large investment to be maintained along the years
- ⇒ Need to be encouraged to keep all the actors motivated and involved (farms, Ministry, KAI)

 On the short-term: provides « indicators » for herd improvement

- ⇒ between herds comparison : strength and weakness of a herd
- ⇒ within herd comparison : mating and culling management
- ⇒ Encourage the improvement of the phenotyping and the database management

EAAP, Nantes 2013

Impact on the organisation of the breeding sector?

- Genomic Selection is a project difficult to implement, with benefits on the very long-term: local and adapted genetic improvement program: genetic trend especially on new traits (of interest for KAI)
- **Initial stimulus and speeding up** of all the process for genetic improvement due to the opportunities offered by Genomic Selection, at different levels:
 - <u>Global level:</u> Federating actors in a network for breeding improvement
 - <u>Technical level:</u> Adoption of international standards
 - <u>Academic level:</u> Training in Animal breeding
 - <u>Farm level:</u> better management practices
- Challenges:
 - Extend to a larger number/type of farms
 - Maintain motivation and investments over the years // political situation in KZ (unstability)

26/08/2013: Interbull workshop

Genomic selection: impact on the organisation of the breeding sector

Genomic Selection in Kazakhstan THANK YOU! Спасибо!

SCIENCE & IMPACT

Akdnoledgments: Lidia Chavinskaya, Agreenium Guy Riba

