

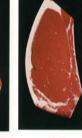
Analytical comparison of online techniques to measure meat quality

Roehe, R.¹, Ross, D.W.¹, Duthie, C-A.¹, Craigie, C.R.¹, Font-i-Furnols, M.², Candek-Potokar, M.³, Maltin, C.A.⁴, Bünger, L.¹

¹Scotland's Rural College, UK;

²IRTA, Spain

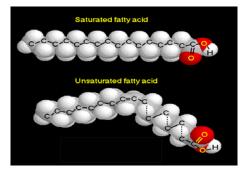
³Agricultural Institute of Slovenia, Slovenia


⁴Quality Meat Scotland, UK

Leading the way in Agriculture and Rural Research, Education and Consulting

Meat quality

Carcass Quality


Moderately Abundant

Slight

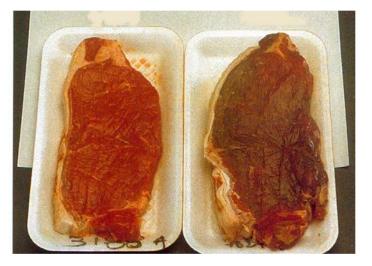
Lean Fat Bone

Moderate

Tenderness Juiciness Flavour Nutritional Quality

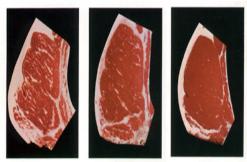
Proteins Fatty acids Minerals

Meat Eating


Quality

Sensory and technological quality of meat

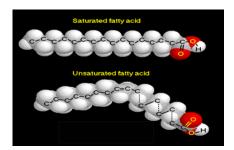
- Sensory quality
 - Tenderness
 - Juiciness
 - Flavour
- Technological quality
 - Colour (myoglobin oxidation)
 - pH values
 - Water holding capacity



Nutritional quality

Meat

- High quality protein
- Array of micronutrients
- Concern
 - High concentration of saturated fatty acids
 - Obesity
 - Cardiovascular disease
- Improvement
 - Change in fatty acid profiles



Moderate

Moderately Abundant

Slight

Meat quality measured online in the abattoir

- Criteria for online measurement techniques
 - robust under abattoir conditions
 - applied as early as possible after post mortem
 - accurate prediction of several meat quality criteria
 - easy and fast to operate
 - cost-effective
- Online measurement techniques
 - Visible Near Infrared spectroscopy (VisNIR)
 - Hyperspectral imaging (HSI)
 - Raman spectroscopy

Near infrared spectroscopy (NIR)

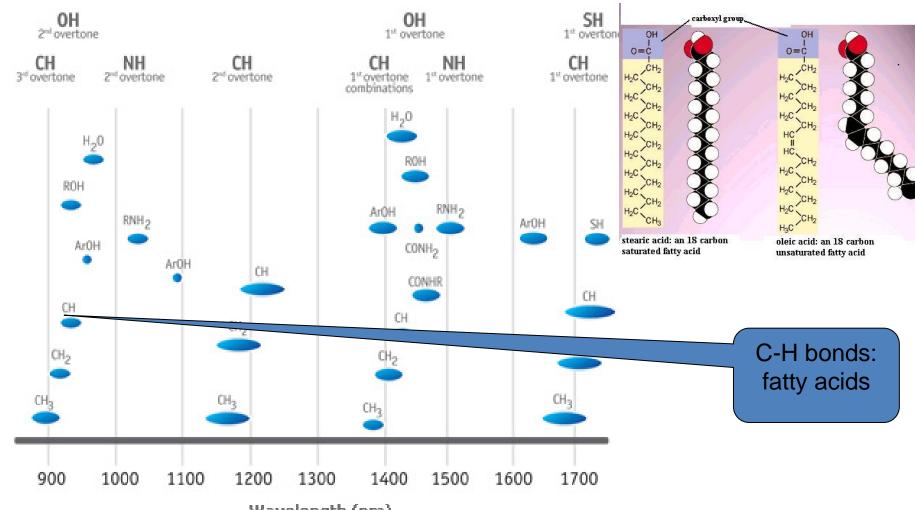
- Technique
 - Near infrared light from 800 to 2500nm
 - Reflection spectra due to vibration of specific molecules at specific wavelength

Literature review Prieto et al. (2009)

Hyperspectral imaging (HSI)

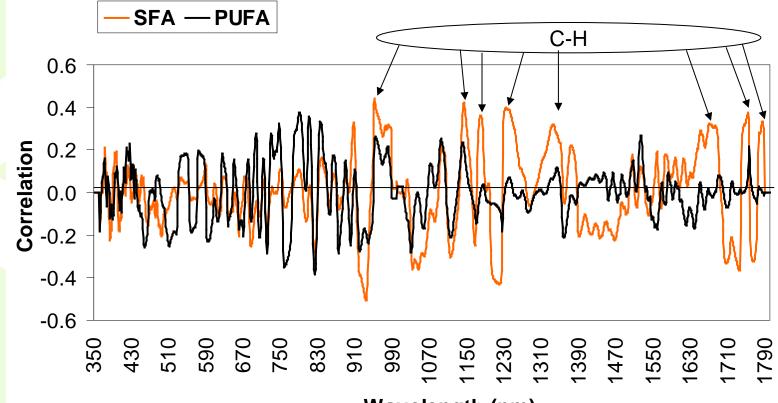
- Technique
 - Combination of imaging and NIR
 - For each pixel a NIR spectra is obtained
 - Differentiate between fat and lean tissue

Raman spectroscopy



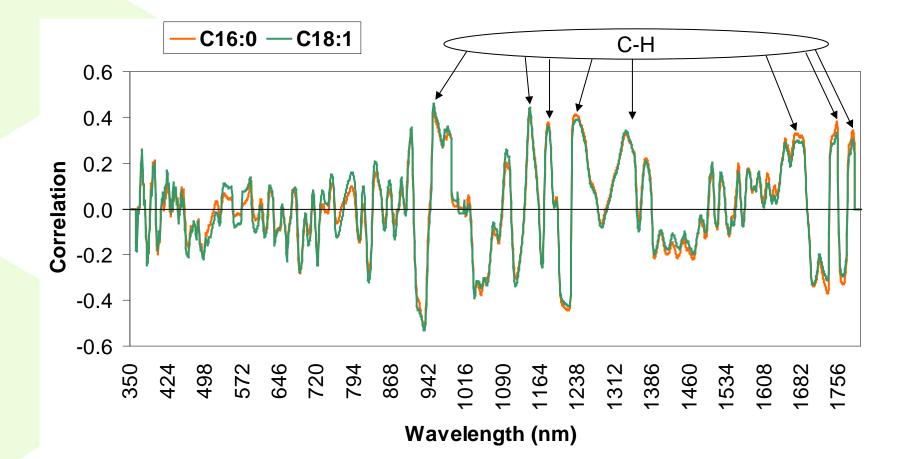
- Technique
 - Measured the scattered light, when the laser light interacts with molecules of the samples
 - The difference between source and scattered light (Raman shift) is associated with certain molecules

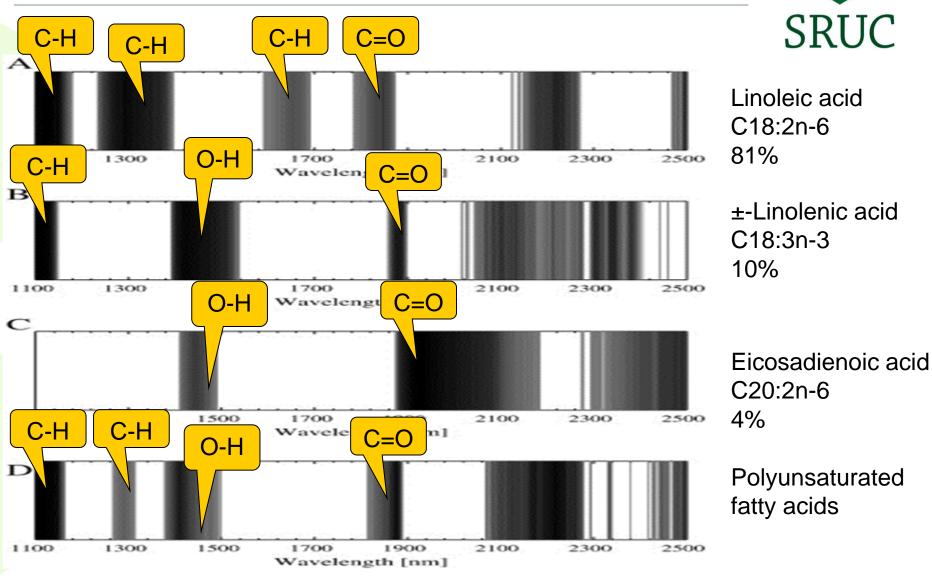
What is NIR measuring?



Wavelength (nm)

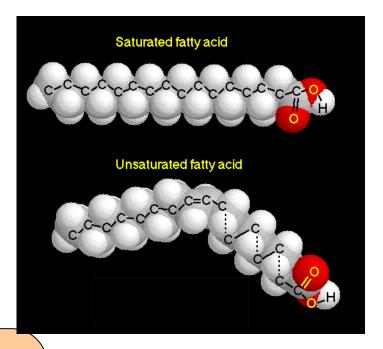
Correlation coefficient between groups of fatty acid content and absorbance




Wavelength (nm)

Correlation coefficient between individual fatty acid content and absorbance

Understanding the relationship between chemical data and NIR



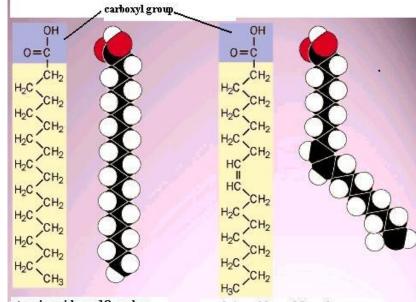
Boschetti et al. (2013)

Near-infrared (NIR) spectroscopy to predict fatty acid groups in beef

NIR measures & groups of fatty acids: R²=0.68 saturated fatty acids (SFA) R²=0.75 monounsaturated fatty acids (MUFA) R²=0.64 polyunsaturated fatty acids (PUFA) R²=0.75 intramuscular fat (IMF)

Prieto et al. (2011)

Near-infrared (NIR) spectroscopy to predict fatty acid profiles in beef



 R²=0.69
 Palmitic acid (C16:0)

 R²=0.71
 Stearic acid (C18:0)

 R²=0.76
 Oleic acid (C18:1n-9)

 R²=0.60
 ±-Linolenic acid (C18:3n-3)

stearic acid: an 18 carbon saturated fatty acid

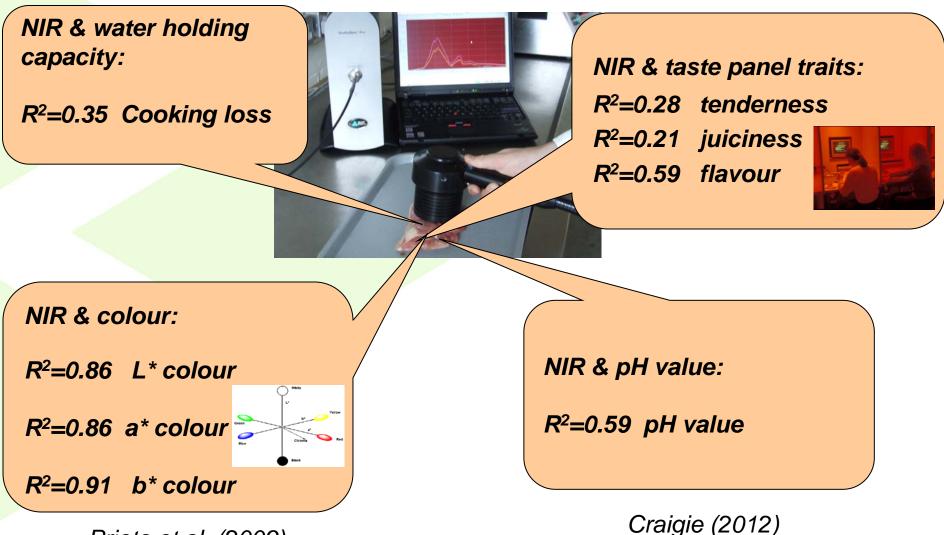
oleic acid: an 18 carbon unsaturated fatty acid

Prieto et al. (2011)

Omega-3 PUFA reduce cardiovascular disease risk

Near-infrared (NIR) spectroscopy to predict tenderness of beef

NIR & taste panel traits: R²=0.28 tenderness


Prieto et al. (2009)

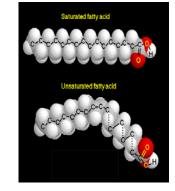
NIR & physical tenderness measurements: R^2 =0.37Volodkevitch shear force R^2 =0.54Slice shear force (3 days) R^2 =0.31Slice shear force (14 days)

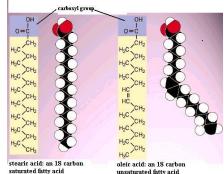
Near-infrared (NIR) spectroscopy to predict numerous meat eating quality in beef



Prieto et al. (2009)

Associations between fatty acids & sensory characteristics


Correlations: Fatty acids & technological characteristics



Fatty acids	Colour (L)	pH value	WHC
SFA	0.59***	0.54***	0.54***
MUFA	0.56***	0.53***	0.53***
PUFA	0.75***	0.74***	0.70***

Influence of sample preparation on the accuracy of NIR measurements

- NIR spectroscopy on meat samples ground, freeze-dried, vacuumpacked and stored at 80°C until analysis (e.g. Zomeño et al., 2012)
 - Intramuscular fat $(R^2 = 0.98, RPD = 7.57)$
 - Saturated fat ($R^2 = 0.96$, RPD = 5.08)
 - Monounsaturated fat ($R^2 = 0.98$, RPD = 6.68)
 - Polyunsaturated fatty acid ($R^2 = 0.83$, RPD = 2.40)
 - Palmitic acid, C16:0 ($R^2 = 0.96$, RPD = 4.93)
 - Stearic acid, C18:0 ($R^2 = 0.90$, RPD = 3.20)
 - Oleic acid, C18:1n-9 ($R^2 = 0.97$, RPD = 6.10)
 - ±-Linolenic acid, C18:3n-3 (R² = 0.94, RPD = 3.93)

Hyperspectral imaging (HSI)

Hyperspectral imaging

- Near infrared spectra for each pixel
- Differentiate between fat and lean tissue
- Differentiate between all components of meat

Hyperspectral imaging in beef

- HSI & physical tenderness:
 - R²=0.77-0.83 Slice shear force (El Masry et al., 2012)

• HSI & colour:

- R²=0.92 L* colour (Wu et al., 2012)
- R²=0.92 a* colour (Wu et al., 2012)
- R²=0.94 b* colour (Wu et al., 2012)

Hyperspectral imaging in pork

- HSI & water holding capacity:
 - R²=0.79 Drip loss, Honikel 1998
- HSI & fat content:
 - R²=0.83 Intramuscular fat
- HSI & sensory characteristics (trained panel):
 - R²=0.54 Tenderness
 - R²=0.49 Juiciness
- HSI & colour:
 - R²=0.90, L* colour
 - R²=0.72 a* colour
 - R²=0.85 b* colour

Barbin et al. (2012 or 2013)

Hyperspectral imaging (HSI)

- Robust measurements
 - Under abattoir conditions
- Statistical analysis
 - Partial least squares regression (PLSR)
 - Principal component (PCA)
 - Artificial neural networks
 - Discriminant analysis
 - Hierarchical clustering
 - Support vector machine regression

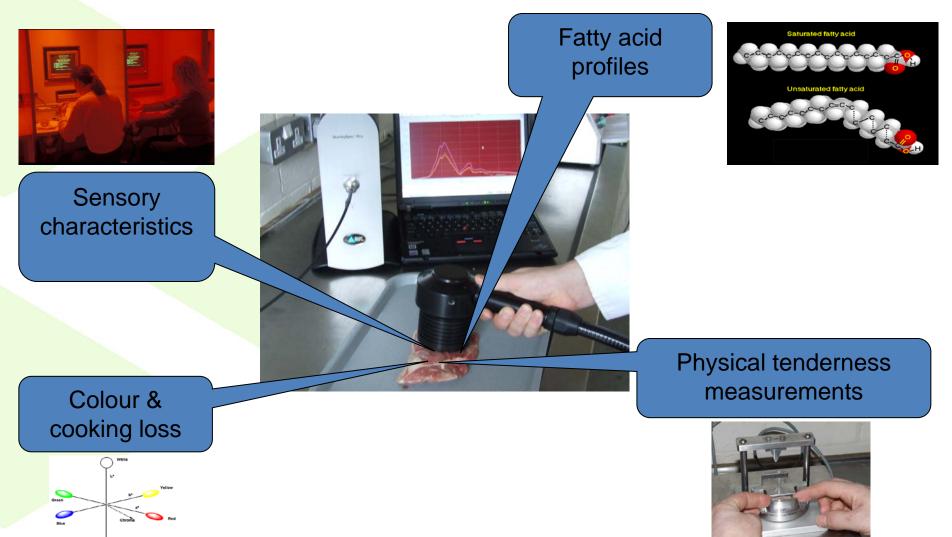
Raman spectroscopy

Raman spectroscopy

Raman spectroscopy in beef

- Raman & sensory characteristics (trained panel)
 - R²=0.65, RMSEP/x=18% tenderness
 - R²=0.62, RMSEP/x=16% juiciness
 - R²=0.26, RMSEP/x=16% flavour
 - R²=0.67, RMSEP/x=11% overall acceptability
- Raman & physical tenderness:
 - R²=0.75, RMSEP/x=20% Warner-Bratzler shear force

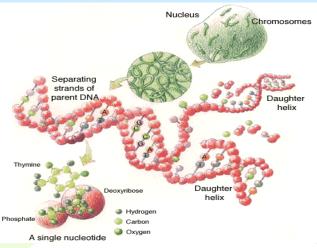
Beattie et al. (2004)


Raman spectroscopy in pork

- Raman & sensory characteristics (trained taste panel):
 - R²=0.99, PA=41% tenderness (Wang et al., 2012)
 - R²=0.99, PA=21% chewiness (Wang et al., 2012)
 - R²=0.98, PA=44% juiciness (Wang et al., 2012)
 (PA = prediction accuracy given 10% error tolerance)
- Raman & fatty acid composition (melted-fat tissue):
 - R²=0.96-0.99 SFA (Olsen et al., 2007)
 - R²=0.96-0.91 MUFA (Olsen et al., 2007)
 - R²=0.98-0.95 PUFA (Olsen et al., 2007)
 - R²=0.98-0.97 Iodine value (Olsen et al., 2007)

Prediction of several meat quality criteria using imaging techniques

Conclusions: VisNIR



- NIR could be used on-line measurement for meat quality
 - Early (in the abattoir)
 - Fast
 - Non-invasive
 - Cost-effective
 - Simultaneous measurements of other technological and sensory criteria
 - Moderate prediction accuracies under abattoir conditions
- Implementation
 - Value-based marketing system
 - Sorting of carcasses by using thresholds (Shackelford)
 - Genetic improvement programmes

Genomic selection for meat quality

- SNP-Chip identifies >770,000 genomic markers
- Used of sequence information

Conclusions: Hyperspectral imaging

- HSI could be used on-line measurement for meat quality
 - Early (in the abattoir)
 - Fast
 - Non-invasive
 - Cost-effective
 - Simultaneous measurements of other technological and sensory criteria
- High potential to be used in the abattoir
 - Substantial more information than NIR
 - Improvement of the robustness of the equipment under abattoir conditions
 - Improvement of the statistical analysis of the image data

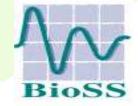
Conclusions: Raman spectroscopy

- Raman could be used on-line measurement for meat quality
 - Early (in the abattoir)
 - Fast
 - Non-invasive
 - Cost-effective
 - Simultaneous measurements of other technological and sensory criteria
 - High potential to predict meat quality characteristics
- Usefulness in the abattoir
 - Sensitive detectors may be influenced by abattoir conditions Moss et al. (2010)
 - Increase in spectral noise is expected

General conclusion

- High potential of these spectral technique for measuring meat eating and nutritional quality
- Improvements
 - Robustness under abattoir conditions
 - Statistical methodology
 - Better understanding what the spectral technique is measuring

Scottish Government and FAIM Cost action for financial support



BCF Technology Ltd. Pioneering Diagnostic Ultrasound for Animals.

