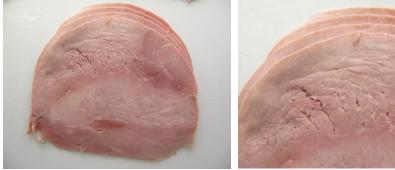


A. Vautier, T. Lhommeau and G. Daumas

Introduction:

Muscle quality is a key factor in the French cooked ham industry: no phosphate and carraghenan allowed in the « Jambon cuit supérieur » process

Cooking yield is controlled by measuring the Semimembranosus ultimate pH


pH24 / cooking yield corr. r =	publication
0.70	Gueblez <i>et al.</i> (1990)
0.84	Alviset <i>et al.</i> (1995)
0.79	Vautier <i>et al.</i> (2011)

Introduction:

Ultimate pH - one of the best indicators for the « PSE-like zone » defect risk level
 (Vautier *et al.*, 2008)

This defect increases the rate of « paste-like » structure on slices of cooked ham

Introduction:

- Ultimate pH measurement is difficult in industrial conditions:
 - rate of production lines
 - calibration stability
 - versatile environment
 - maintenance (electrodes)

Nowadays, processed meat industry need a more accurate technique to predict process yields

Introduction:

Visible + NIR spectroscopy appears as a dedicated alternative for meat quality prediction:

Some interesting work on drip loss

(Savenije *et al.,* 2006; r =0,58)

- Visible spectroscopy produced satisfying cross validation results for cooking yield prediction (Vautier et al., 2011)
- Spectrum collection frequency up to 600/hour
- Low effect of industrial environment on NIRS device (contact probes)

Objectives:

To confirm the precision of NIRS prediction of the cooking loss and PSE-like zones

External validation data set

To explore multiple muscle/probe couples for bone-in and deboned pork hams

- Materials and methods:
- Sampling:
 - 110 individual cooked hams
 - "Jambon Cuit Supérieur"
 - Processing performed following industrial standards and materials
- 2 data sets:
 - Calibration data set (n= 74)
 - ► PLS regression determined by cross validation
 - External validation data set (n=36)

Materials and methods:

Spectrometer:

- ASDI labspec5000 device
- Spectrum range used: between 350 and 1800nm
- 2 contact probes

Labspec5000

Insertion probe (two ways optical path)

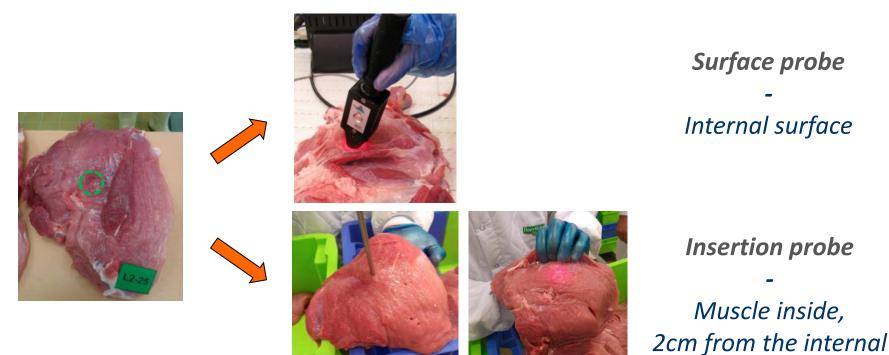
Surface probe

Materials and methods:

Raw material = deboned hams

Semitendinosus

R.Femoris + Vastus


Biceps Femoris

Semimembranosus Gluteus Medius + Adductor

Materials and methods:

- **NIRS** measurements:
 - Semimembranosus (SM)

10

surface

Materials and methods:

NIRS measurements:

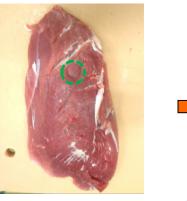
Semitendinosus (ST)

Surface probe

Internal surface

Gluteus Medius (GM)

Surface probe -Muscle section


A.Vautier - EAAP Nantes

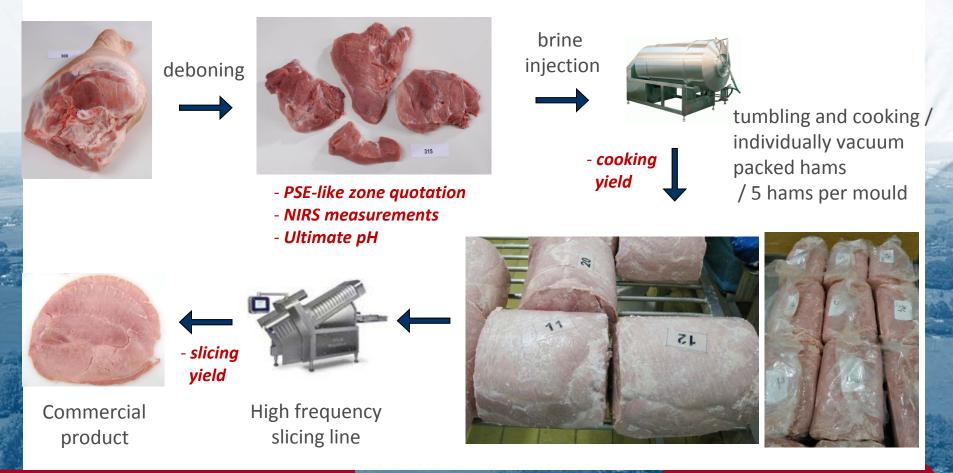
Materials and methods:

NIRS measurements:

Biceps Femoris (BF)

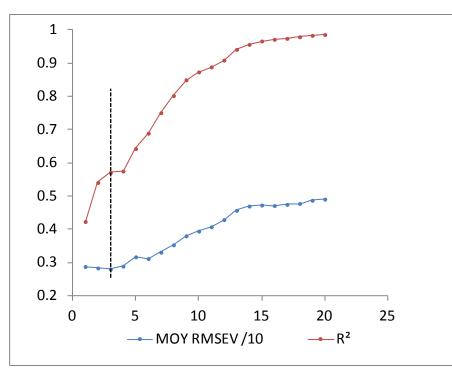
Surface probe -Internal surface

Vastus Lateralis (VL)



Surface probe -External surface

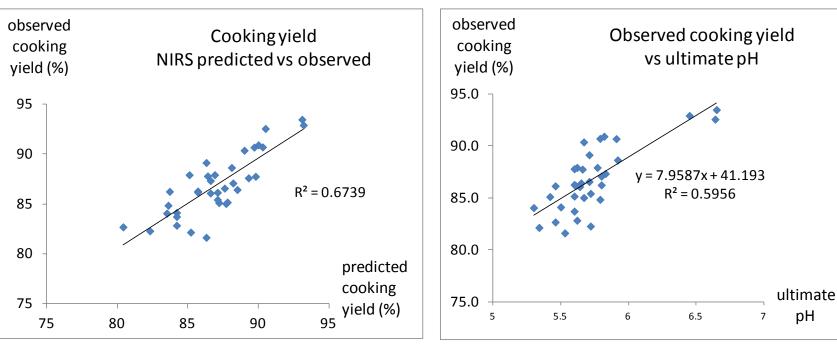
Materials and methods:


Ham processing with individual traceability:

Results for cooking yield prediction:

1 – Gluteus Medius calibration

 Idation
 Calibration


(1/3)		(3/3)
Rmsev min.	Nb PLS factors	R ²
2.80	3	0.57

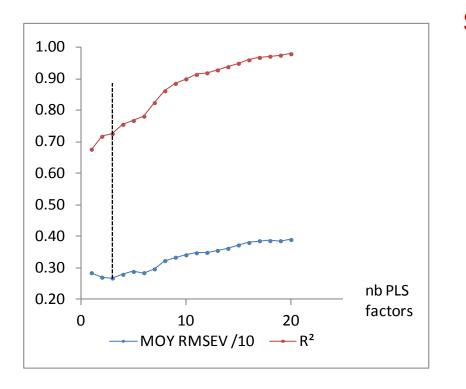
(n = 74)

Results for cooking yield prediction:

1 – Gluteus Medius external validation

(n = 36)

(n = 36)

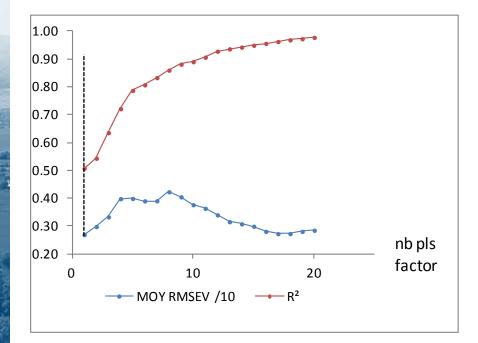

r = 0.82 / error = 1.62

r = **0.77** / error = **1.53**

Results for cooking yield prediction:

2 – Semimembranosus calibration

Surface probe



Cross validation (1/3)		Calibration (3/3)
Rmsev min.	Nb PLS factors	R²
2.68	3	0.73

Results for cooking yield prediction:

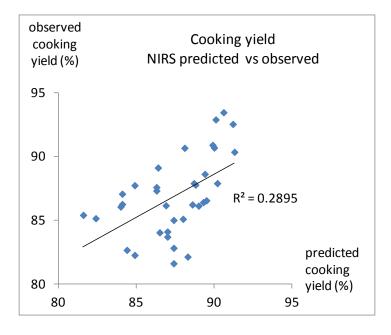
2 – Semimembranosus calibration

insertion probe

(n = 74)

Cross validation (1/3)		Calibration (3/3)	
Rmsev min.	Nb PLS factors	R²	
2.69	1	0.51	

Results for cooking yield prediction:


2 – Semimembranosus external validation

observed Cookingyield cooking NIRS predicted vs observed yield (%) 95 90 $R^2 = 0.4768$ 85 80 predicted cooking 75 yield (%) 95 75 80 85 90

r = 0.69 / error = 2.37

Surface probe

Insertion probe

r = 0.54 / error = 2.11

Results for cooking yield prediction:

3 – Other muscles <u>external validation</u>

		External validation (n=36)	
Probe	Muscle	NIRS predicted / observed cooking yield (r =)	Error
Surface probe	Vastus Lateralis	0.60	1.87
	Biceps Femoris	0.53	1.94
	Semitendinosus (internal surface)	0.55	1.88
	Semitendinosus (external surface)	0.28	2.64

Results for PSE-like zones classification:

- Only presence/absence classification was used (IFIP scale shows 4 grades)
- Same PLS procedure as for cooking yield but based on discriminant analysis

Results for PSE-like zones classification:

External validation results

		External validation (n=50)	
Probe	Probe Muscle	Correctly classified (%)	% false positive/ % false negative
Surface	Gluteus Medius	60	77 / 23
	<i>Semimembranosus</i> (internal surface)	84	57 / 43
Insertion	<i>Semimembranosus</i> (muscle inside)	77	65 / 35

A.Vautier - EAAP Nantes

22

A feasability study for the prediction of the technological quality of ham with NIR spectroscopy

Conclusions:

<u>1 – Cooking yield prediction</u>

Best results for:
 contact probe / Gluteus Medius

external validation: r=0.82 / error=1.62

(cooking yield standard deviation=3.6)

Availability on deboned and bone in hams

Conclusions:

<u>2 – PSE-like zone classification</u>

Efficient on Semimembranosus only

Best results with the contact probe

84% correct classification

77% (insertion probe)

Thank you for your attention

A.Vautier - EAAP Nantes

Lundi 26 aout 2013 24