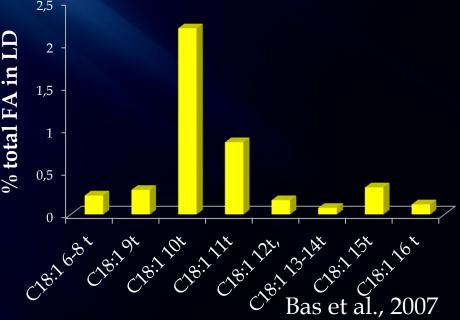

EFFECT OF DIETARY VITAMIN E ON TRANS FATTY ACID PROFILE OF MUSCLE AND ADIPOSE TISSUES OF INDOOR LAMBS

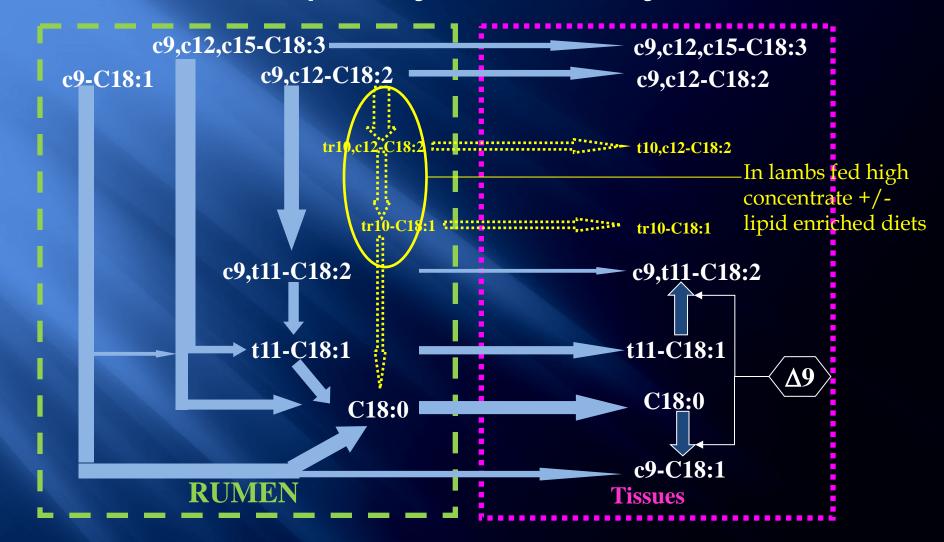
V. Berthelot, L. Broudiscou, P. Schmidely

UMR MoSAR INRA-AgroParisTech, Paris, France

Context (1)


- To improve meat nutritional quality from ruminant producers need to focus on
 - Lipid content
 - PUFA and specially n-3 LC-PUFA content
 - Limitation of trans-FA (other than C18:1 11t), specially C18:1 10t

precursor of C18:2 9c, 11t ©


associated to coronary heart disease in human 🛞

- Lambs fed high concentrate diets +/- supplemented with lipids

 - High proportion of trans C18:1^H Mainly C18:1 10t vs C18:1 11t profile

Ruminal biohydrogenation of PUFA and metabolic pathways of some FA synthesis

with diets rich in concentrate and/or in PUFA

In normal conditions of FA biohydrogenation

Δ9: Stearoyl-CoA desaturase activity in tissue

Context (2)

- Vitamin E (α -tocopherol) =
 - Essential vitamin required for animals
 - Lipophilic antioxidant used to prevent discoloration and oxidation rancidity during storage in meat

 In steers fed barley, vitamin E supplementation (from 30 to 170mg/kg DM)

- Decreased proportion of total trans C18:1 in muscle and adipose tissues (Juarez et al., 2011)
- Decreased C18:1 10t proportion associated to an increase or not in the C18:1 11t proportion in muscle or adipose tissues (Juarez et al., 2010; Mapiye et al., 2012)

Vitamin E = a way to prevent the 11t to 10t shift during biohydrogenation of PUFA in the rumen ?

Aim of the study

Investigate the effect of dietary vitamin E supplementation on trans fatty acid profile of muscle and adipose tissues of lambs fed high concentrate diet supplemented with lipids

Material and methods

30 male Romane lambs

10 lambs Vit E0 concentrate (45 mg/kg) 10 lambs Vit E1 concentrate (286 mg/kg) 10 lambs Vit E2 concentrate (551mg/kg)

1st

2nd slaughter

Concentrate + bedding straw *ad libitum*

Blood sampling for plasma vitamin E concentration

Slaughter BW ≈ 45 kg

Measurement

Each week : Concentrate intake Lamb body weight

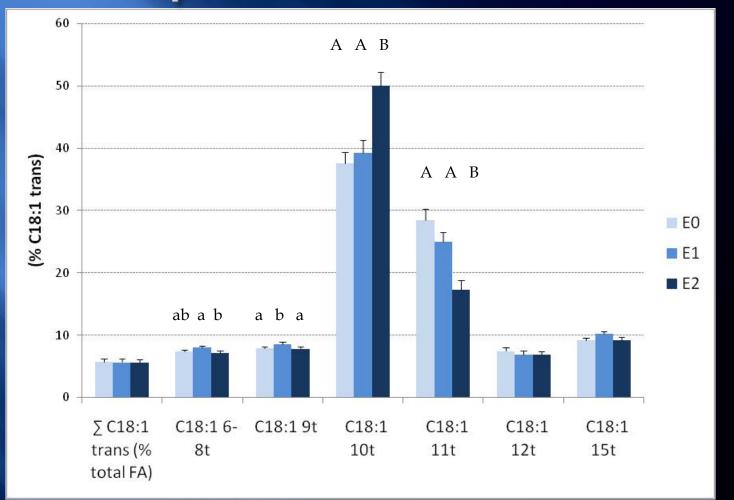
At slaughter :

Muscle (*extensior carpi radialis*) Perirenal adipose tissue Caudal adipose tissue

FA determination by GC

Feed and chemical composition of the concentrates

	EO	E1	E2
Concentrate composition (%)			
Dehydrated alfalfa	24	23.6	23.15
Wheat	44	44	44
High fat rapeseed meal	24	24	24
Molasses	6	6	6
Mineral and Vitamin mix	2	2.4	2.85
Chemical composition (% DM)			
OM	90.9	90.9	90.3
NDF	25.3	23.1	24.0
Crude protein	19.9	19.8	19.8
Total Fatty Acid	4.6	4.7	4.5
Fatty acid (g 100g FA ⁻¹)			
C16:0	11.0	10.7	10.7
C18:0	2.1	1.9	1.9
C18:1 n-9	42.1	41.4	41.7
C18:2 n-6	28.4	29.6	29.1
C18:3 n-3	8.0	8.4	8.1
dl- α -tocopheryl acetate (mg kg ⁻¹)	45	286	551


Lamb performance and slaughter parameters

Item	EO	E1	E2	SEM	Р
number of lambs	10	10	9		
Initial liveweight (kg)	29.4	28.9	30.2	0.48	0.56
Liveweight at slaughter (kg)	46.7 ^{ab}	44.9 ^a	47.2^{b}	0.42	0.05
Age at slaughter (d)	132	132	131	1.5	0.93
ADG (g/d)	385	358	389	8.3	0.26
Cold carcass weight (kg)	20.6	19.7	20.6	0.22	0.15
Killing out percentage (%)	44.1	43.9	43.5	0.20	0.50
Conformation score ¹	8.1	7.7	8.2	0.11	0.13
Fatness score ²	7.7	7.7	7.3	0.20	0.70

¹ 15 points conformation scale (P-=1 to E+=15)

² 15 points fatness scale (1⁻⁼¹ to $5^+=15$)

Effect of dietary vitamin E supplementation on the C18:1 trans profile of tissues

(a, b): P<0.05 (A, B) P<0.0001

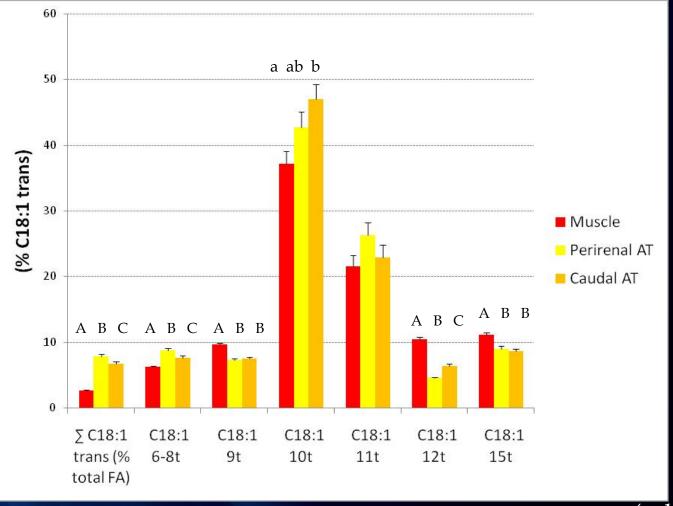
Discussion

 Contrary to dietary vitamin E supplementation of steers fed high concentrate diets (Juarez et al., 2010 and 2011 Malpiye at al., 2012)

• No decrease in the proportion of $\sum C18:1$ trans

No prevention of the C18:1 10t shift

Hypotheses :


- Physicochemical conditions (pH, Eh) and the microbial community composition in lambs rumen compared to steers might be different enough to qualitatively change the action of vitamin E
- The 10t shift might have already occured in lambs as it was shown that vitamin E supplementation in dairy cows was unable to restore the 11t pathway when the 10t-shift had been already settled. (Zened et al., 2012)

Conclusion

- Dietary vitamin E supplementation
 - Did not modify lamb growth and slaughter parameters
 - Did not decrease the proportion of $\sum C18:1$ trans
 - Increased the proportion of C18:1 10t and decreased the C18:1 11t (and C18:2 9c,11t) in muscle and adipose tissues of lambs fed the highest level of vitamin E supplementation (500 mg/kg DM)
- Vitamin E supplementation did not improve the C18:1 trans isomeric profile in the meat of lambs fed high concentrate diets. It potentially lowered the lamb meat nutritional value.

Thanks for your attention

C18:1 trans profile in muscle and adipose tissues

(a, b): P<0.001 (A, B) P<0.0001