

Gourdine, J-L¹, Renaudeau, D², Riquet, J³, Bidanel J-P⁴, Gilbert, H³

1: UR143 URZ, 97170 Petit-Bourg, Guadeloupe, France

2: URM1348 Pegase, 35000 Rennes, France

3: UMR144 LGC, 31326, Castanet-Tolosan, France

4: UMR1313 GABI, 78352 Jouy-en-Josas, France

Nantes, EAAP 2013

Les auteurs remercient la Région GUADELOUPE pour leur soutien financier à la réalisation de ce travail.

Why considering heat tolerance in breeding pigs?

What could be the breeding objectives?

How achieving the goal?: traits of interest

How achieving the goal?: breeding schemes

$1_{/1}$ Why considering heat tolerance in breeding pigs?

Definitions Heat resistance: ability to survive to heat stress

Heat tolerance: ability to maintain his production level under thermal stress

Heat stress: we can find three types of heat stress in farming systems <u>"Long-term"</u>: as it occurs in warm climates

<u>"Short-term"</u>:

a. during 2-3 summer months in temperate areas

b. during heat waves

/2 Why considering heat tolerance in breeding pigs?

- **Global pig market:** Pig breeding is an international business
- Increased pig production in warm climates: More than 50 % of pig production occurs in warm climates, with predicted faster growth than in temperate areas (FAO, 2006)
- Increased sensitivity to heat stress of mainstream pig breeds (see meta-analysis of Renaudeau et al., 2011): e.g. USA pig production :economic losses from heat stress : around 300 millions dollars/year (St-Pierre et al., 2003)
- Genetic component of heat tolerance exists: Between or within breeds or lines (Gourdine et al., 2006; Zumbach et al., 2008; Bloemhof et al., 2008; Lewis and Bunter, 2011; Bergsma and Hermesch, 2012)
- Climate change: the general average temperature is expected to increase with the frequency and the amplitude of heat waves and thus heat stress should be accentuated (IPCC, 2007; Hoffmann, 2010)

Why considering heat tolerance in breeding pigs?

What could be the breeding objectives?

Specific genotypes according to the environment of production

e.g. Large White and Landrace dam lines selected from tropical data are relatively robust to high temperatures (Lewis and Bunter, 2011; Bloemhoff et *al.*, 2012)

O Robust pigs: able to perform in most conditions of production (Knap 2005)

Farrowing rate

Z₂

Source: adapted from Bloemhof et al. (2013)

What could be the breeding objectives?

Evaluating and taking into account GxE interactions is crucial => several prerequisites

- Accurate standardized phenotypes
- Good knowledge on genetic parameters and correlations between traits of interest according to the heat load
- Sufficient variation in environmental constraints and correct description of environments of production
- Good representation of progeny across environments

- Thermoregulatory indicators
- New phenotypes from « omics » tools

How achieving the goal? traits of interest: usual performance traits

This is the case of most research studies

- Investigation of genetic component of economic important traits as a function of head load
- Use of reaction norm models => h² of traits may differ according to the head load: *e.g.*

Carcass weight	Cold	Hot
Cold	h² = 0.14 œ0.01	r _g = 0.42 œ0.13
Hot		h² = 0.28 œ0.01

Source: adapted from Zumbach et al. (2008)

3/2 How achieving the goal? traits of interest: thermoregulatory indicators

The second strategy consists in selecting for heat resistance while keeping up the production efficiency.

• We can distinguish:

Source: adapted from Mount (1979) and Renaudeau et al. (2004)

How achieving the goal? traits of interest: thermoregulatory indicators

The inheritance of traits directly related with thermoregulatory responses is poorly described in pigs.

e.g. : genetic parameters from tropical Large White lactating sows (Gourdine et *al.*, 2013).

	Rectal temperature	Respiratory rate	ADFI	Litter growth rate
RT	h² = 0.39 œ0.10		r _g = -0.12 œ0.31	r _g = -0.05 œ0.20
RR		h² = 0.23 œ0.07		
ADFI			h² = 0.10 œ0.06	r _g = 0.55 œ0.22
LGR				h² = 0.28 œ0.05

- There is no commercial genetic program with thermoregulation traits in the selection index. Why?:
 - Need to choose biologically relevant traits technically easy and low cost to record
 - Need to weight the trait in the breeding index:

e.g. what is the economic cost of 0.1°C increase of the SD of body core temperature of lactating sows?

How achieving the goal? traits of interest: new phenotypes from genomic tools

• To our knowledge, only few QTLs related to heat resistance have been identified in pig:

e.g. In infection disease experiments, 10 QTLs were found for body temperature (Reiner et *al.*, 2007)

Source: http://www.animalgenome.org/

How achieving the goal? traits of interest: new phenotypes from genomic tools

- An alternative strategy to select heat tolerant pig could be :
 - o Identifying SNP panels dedicated to production traits under heat stress
 - Using the SNP panel as a selection tool for estimating genomic breeding values
- The implementation requires :

 a reference population and candidates close enough for the accuracy of genomic breeding values

o low cost SNP panels for the economic efficiency of the scheme

3/7 How achieving the goal? traits of interest: new phenotypes from genomic tools

• New phenotypes from structural and functional genomic studies: *e.g.* the INRA PigHeaT project (2012-2016) (ANR-12-ADAP-0015)

1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 10 20

Why considering heat tolerance in breeding pigs?

How achieving the goal?: traits of interest

How achieving the goal?: breeding schemes

- Genetic improvement program for heat tolerance can be addressed either through genetic selection or crossbreeding or both:
 - Crossbreeding from mainstream commercial pig breeds is the norm
 - But, the heat tolerance of local tropical breeds could be utilized by crossbreeding or by introgressing "heat adaptation" genes into a mainstream commercial breed (or line)
- To our knowledge, little has been published on this topic in pigs:
 - Many local pig breeds are from tropical areas, but many of them are not well characterized.
 - It is necessary to implement breeding programmes for conservation and improvement of locally heat-adapted breeds. (FAO, 2007; Hoffmann, 2010)

Why considering heat tolerance in breeding pigs?

What could be the breeding objectives?

How achieving the goal?: traits of interest

How achieving the goal?: breeding schemes

- Breeding for heat tolerance traits in pigs is a complex issue.
- But we can expect that selecting animals with high-production level under hot environment can be achieved with success and in different ways.
- For that, additional researches are still required to better know:
 - The level of GxE interactions of economically important traits
 - The genetic basis of variation of heat tolerance / resistance
 - The physiological mechanisms underlying heat tolerance

- Other aspects could interact with breeding for heat tolerance such as:
 - disease resistance,
 - digestive efficiency with diverse resources
 - purebreds-crossbred interactions
 - and ...
- Genetics is not the only solution to mitigate the effects of heat stress, but it should contribute.