

THE COST OF BATCH VARIABILITY AS A COMPONENT OF ECONOMIC VALUES FOR ROBUSTNESS TRAITS

Peter Amer – Abacus Bio, Dunedin, New Zealand

Susanne Hermesch – AGBU, UNE, Armidale, Australia

EAAP– Nantes – August 2013

The project was funded by the Pork CRC for High Integrity Australian Pork

- Selection for growth, feed efficiency and leanness key to pig genetic improvement
- May not be sustainable long term?
- Modern genotypes much more sensitive to the environment
 - Heat
 - Cold
 - Disease
 - Feed quality

Focus on the mean

- Genetic evaluation focus is on the mean of traits
- Reducing variability of performance implies robustness
- □ But what is in it for the commercial pig farmer?
- Clear economic drivers = change in breeding programs
- Reduced variability of performance
 - Short term profit
 - Long term sustainability

Batch variability

Consistent

Variable

Batch finishing system

Time

Batch finishing system

- Need to refill the pen
- Not profitable to keep partly filled pen
- Underweight pigs are penalised
- More variable pen = more underweight pigs

- Tradeoff
- How long before the pen is cleared?
- Keep longer
 - Less penalties for underweight pigs
 - Higher opportunity cost of unused facilities
- Example calculations for Australia

Dressed carcase	Moderate	Severe	Moderate	Severe
weight band	threshold	threshold	step	step
60-70kg	0	0	-0.10	-0.20
50-60kg	0	0	-0.20	-0.40
<50kg	-1.00	-2.85	-0.30	-0.60

Other assumptions

Parameter name	Values used
Feed price (\$ fresh weight/tonne)	230
Daily dressed carcase weight gain (kg/day)	0.6
Target dressed carcase weight (kg)	70
Base carcase price (\$/kg dw)	2.85
Opportunity cost per pig per pen per day (\$)	0.20, 0.50, and 0.80

Dressed carcase	Moderate	Severe	Moderate	Severe
weight band	threshold	threshold	step	step
60-70kg	0	0	-0.10	-0.20
50-60kg	0	0	-0.20	-0.40
<50kg	-1.00	-2.85	-0.30	-0.60

Dressed carcase	Moderate	Severe	Moderate	Severe
weight band	threshold	threshold	step	step
60-70kg	0	0	-0.10	-0.20
50-60kg	0	0	-0.20	-0.40
<50kg	-1.00	-2.85	-0.30	-0.60

Dressed carcase	Moderate	Severe	Moderate	Severe
weight band	threshold	threshold	step	step
60-70kg	0	0	-0.10	-0.20
50-60kg	0	0	-0.20	-0.40
<50kg	-1.00	-2.85	-0.30	-0.60

Econ. Val. vs Pen Cost

Dressed carcase	Moderate	Severe	Moderate	Severe
weight band	threshold	threshold	step	step
60-70kg	0	0	-0.10	-0.20
50-60kg	0	0	-0.20	-0.40
<50kg	-1.00	-2.85	-0.30	-0.60

Econ. Val. vs Pen Cost

- There is a clear rationale for economic cost of batch variability in finishing pigs
- Economic impact depends on (interacting)
 - Penalties for underweight pigs
 - Opportunity cost of growing facility (Pen Cost)
- High batch variability driven by
 - Very high lean growth potential
 - Variation in weaning weight within and across litters
- Need EBVs for variability in growth rate

- Economic penalty on other traits that increase batch variability
 - Increased weaning weight variability with increased litter size
 - Low sow survival equals more weaned pigs from gilts with lighter and more variable weaning weights
 - Disease susceptibility/tolerance traits