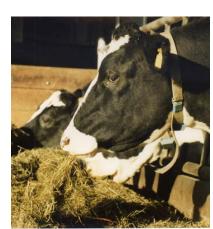
Evaluation of fill unit systems used for dairy cattle

EAAP meeting, Nantes, France, August 26th 2013 Ronald Zom, <u>Gert van Duinkerken*</u>, Ad van Vuuren

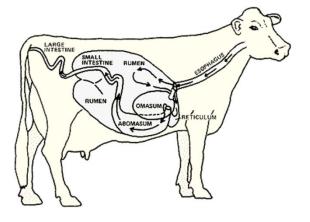


*Presenting author

Why Prediction of Feed Intake?

Feed budgeting & diet formulation

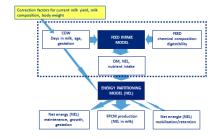
- Identify feed surplus/shortage
- Allocation of available feeds to groups of cows
- Balancing diets
- Explore different feeding strategies
 - Alternative forage & concentrate options
 - Evaluate economical and environmental impact
 - Feed 50-70% of operational costs
 - N, P and GHG emissions



Regulation of Feed Intake

Complex multi-pathway feedback mechanisms

- Feedback mechanisms Central Nervous System
 - GIT: chemo- and mechanoreceptors (fill, pH, osmolality)
 - Metabolism: oxi-, gluco- and lipostatic regulation
 - Body composition (fatness)
 - Environment (housing, climate, photoperiodicity)
 - Feed: taste, smell, preference
 - Feeding method, feed availability, diet composition
- In short: Animal × Feed interactions



Feed intake models

Flexibility

- Suitable for various feeds
- Easy measurable inputs
- Should include
 - Feed factors
 - Animal factors
 - External factors
- Accurate and robust

Modelling Feed Intake

- Mechanistic models
- Multiple regression models
 - Concentrate input, cell wall fractions (forage, concentrate)
 - Stage of lactation, lactation number, Milk yield
 - Temperature

Fill Unit systems

- Separation in Animal and Feed factors
- Flexible, suitable in many different situations

"Fill" Unit systems

The principle of fill-unit systems

DMI (kg/d) = IC/Fill

IC = Intake Capacity in "Fill" - units/day

Fill = "Fill"-units per kg DM

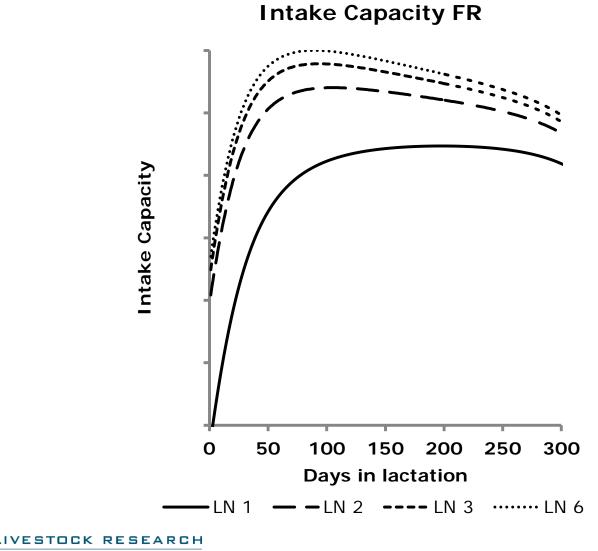
- Intake capacity
 - The animals ability to process the "Fill"
- "Fill"
 - Not only physical limitation of intake
 - Preference, digestibility, metabolic regulation

- France INRA (FR) (Jarrige et al. 1986, Faverdin et al. 2011)
- Netherlands (NL)(Zom et al. 2012)
- Nordic Countries NorFoR (NF) (Volden et al. 2011)

Fill unit systems: animal factors

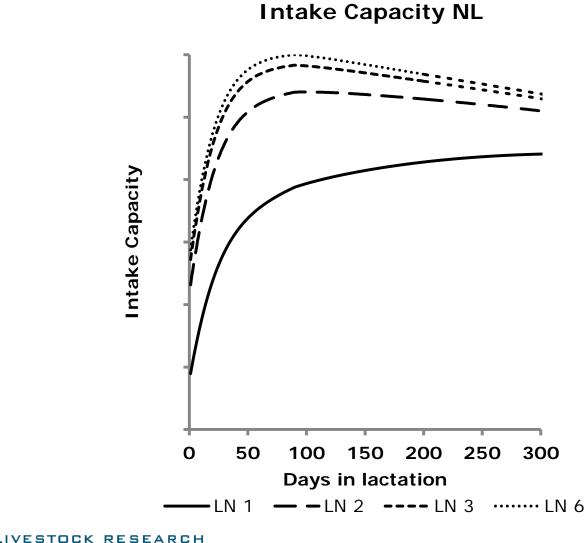
Model inputs to predict Intake Capacity

	FR	NL	NF
Stage of lactation	×	×	×
Stage of gestation	×	×	×
Lactation number	×	×	×
Age	×		
Breed	(×)	×	×
BCS	×		×
BW	×		×
Milk yield	×		×
	maxPotMY kg/d		ECM kg/d
	Max Pot.		

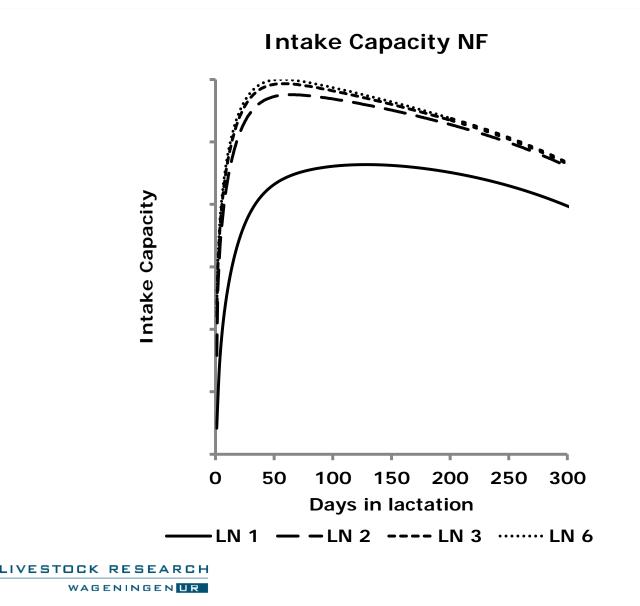


Animal factors

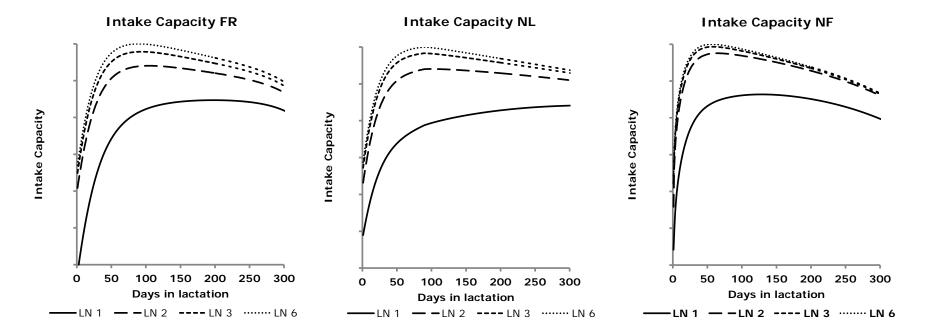
- Animal factors represent the physiological and metabolic state of the cow
- Animal outputs (actual Milk Yield, BW, BCS) as input
 - Difficult to combine with predictive models of animal production
 - Require assumptions of a "potential" production
 - Potential production requires non limiting conditions
 - Iterative routines



Intake Capacity FR


WAGENINGENUR

Intake Capacity NL



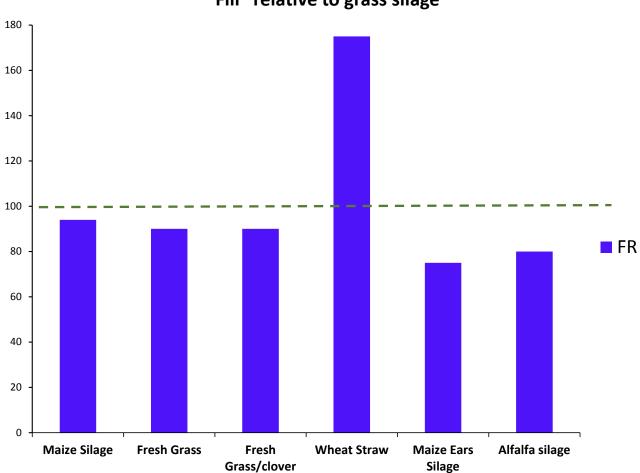
WAGENINGENUR

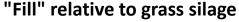
Intake Capacity NF

Intake Capacity

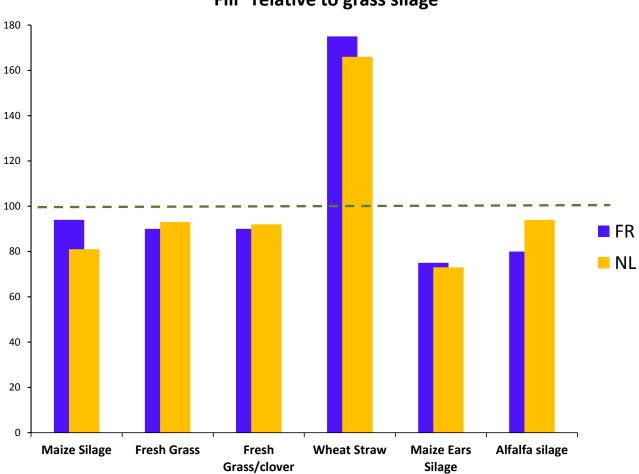
Fill unit systems: feed factors

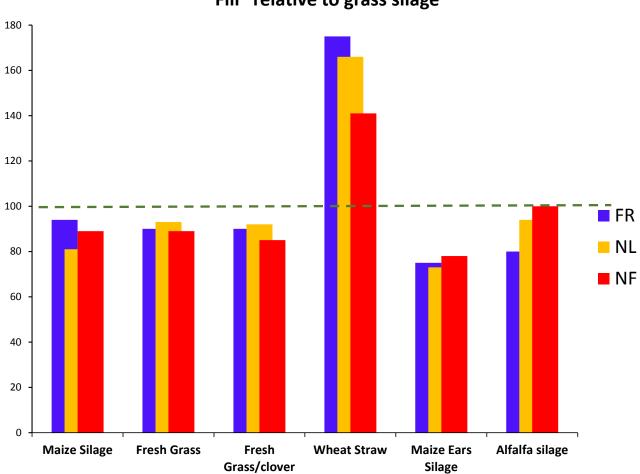
	"Fill" Value Forage	"Fill" Value Concentrate
FR	Table Values & equations	Variable
	Inputs: DM, Cfibre, CP	Energy balance
NL	Feed specific equations	Variable
	Inputs: DM, Cfibre, CP	equation
	Ash, %OMD	
NF	Non specfic equation	Fixed
	Inputs: NDF, %OMD	
	fermentation products	


Fill unit systems: feed factors


Dry Matter

- Bulk volume, silage preservation, hydration, microbial colonisation ...
- Crude Protein
 - Nitrogen availability for rumen microbes ...
- Crude Fibre / cell walls
 - Particle size reduction, passage rate ...
- Digestibility / OMD%
 - ruminal VFA production, ruminal disappearance ...


Approximate Fill value relative to grass silage


Approximate Fill value relative to grass silage

"Fill" relative to grass silage

Approximate Fill value relative to grass silage

"Fill" relative to grass silage

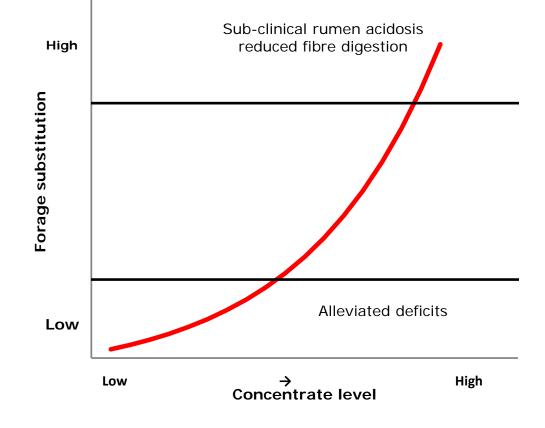
Fill value of forage

- Within forage differences in relative "Fill"
- FR NL NR
 - Ranking of "Fill" of feeds similar
 - Fill Maize silage & Fresh grass < Grass silage
 - Fill Straw > Grass silage

Fill value of concentrate and substitution (I)

- Substitution of forage intake by concentrate intake
- "Concentrate" has no clear definition → arbitrary
- Systems are different
 - NL \rightarrow simple
 - NR → linear with adjustment for sugar and starch content
 - FR \rightarrow interaction with energy balance

Fill value of concentrate and substitution (II)


- Non-linear substitution rate (SR)
 - Low substitution at low concentrate levels
 - Alleviate deficits (readily available CHOs, N, etc.)
 - High substitution at high concentrate levels
 - (Sub)-clinical rumen acidosis, reduced fibre digestion

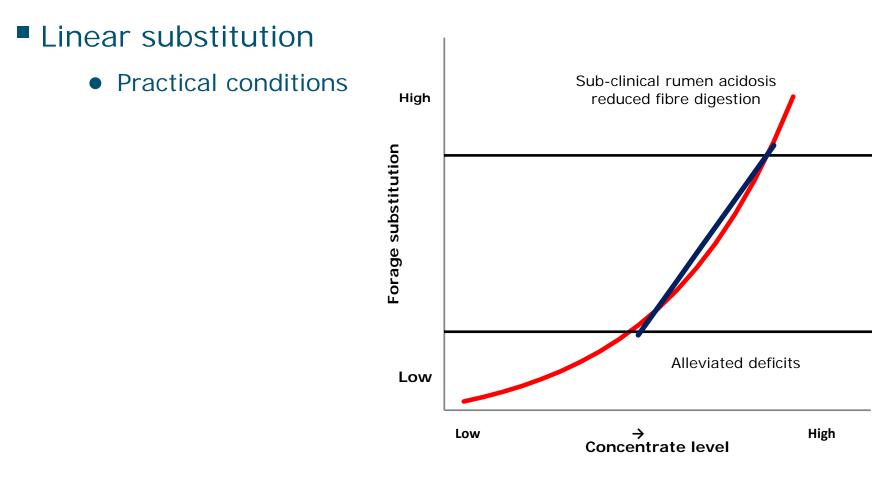
Fill value of concentrate and substitution (III)

Systems are different with regard to substitution of forage

Non-linear

Fill value of concentrate and substitution (IV)

- Systems are different with regard to substitution of forage
- INRA system rather complex
 - Takes the energy balance into account
 - Reflects metabolic regulation
 - Needs an output (milk production) as an input
 - Feed intake model can only be used in conjunction with the UFL energy system



Fill value of concentrate and substitution (V)

- Systems are different with regard to substitution
- NL system:
 - Linear substitution \rightarrow SR=Fill_{Concentrate} / Fill_{Forage}
 - Non-specific, substitution of any feed "x" by any feed "y"
 - Limitation: general "nutrition rules" have to taken into account
 - Minimum levels of physical structure (effective fibre)
 - Avoid deficits (N, minerals, physical structure), e.g. Rumen Degradable Protein balance >0
 - Suitable under practical conditions

Fill value of concentrate and substitution (VI)

Fill value of concentrate and substitution (VII)

NR: Linear with adjustment for diet composition

- NorFor system
 - Fixed Fill value for concentrate
 - Substitution rate is linear
 - Substitution is not a "concentrate" effect per se
 - Taking the whole diet into account
 - Adjustments for starch and sugars in the diet

Discussion (I)

- Fill Unit systems differ in:
- Animal factors:
 - Actual and "potential" milk production
 - MY correlated with DMI \rightarrow MY is pushed by (energy) intake
 - Intake lags behind milk yield
 - Potential milk production is not really known
 - Milk production may be associated with metabolic state (pull)
 - Genetic level or breed
 - Scaling factors
 - Genetic theoretic intake potential

Discussion (II)

Fill Unit systems differ in:

- Feed factors:
 - Limitations in available data, e.g.
 - Proportion of concentrates
 - Feed variables
 - Growing condition grass (N fertilization)

Discussion (III)

National research efforts in feed evaluation

- national systems create national "nutritional languages"
- fragmentation of research efforts
- individual EU countries: risk for reduced expertise, funding and involvement of young scientists

Discussion (IV)

Harmonizing of feed evaluation systems in Europe

- systematically compare feeding systems in use in EU
- work towards a more unified system of farm animal nutrition in Europe
- stimulate "European thinking" and shared language
- collaborative capacity and network building
- accelerate innovation

Discussion (V)

Harmonizing Fill Unit systems in Europe:

- Cross validation
 - Testing the models in different situations
 - Harmonizing datasets and feed variables
 - Parameterization to other datasets
- Improve models
 - Harmonize models
 - Collaboration in future innovations

Discussion (VI)

Future developments in fill unit systems

- Fill systems integrated with grazing systems
 - FR: GrazeIn (2011), NL: GrazeVision (2011)
- Modelling differences in genetic potential
- ...
- ...

Thanks for your attention!

ronald.zom@wur.nl gert.vanduinkerken@wur.nl

