

Food and Agriculture Organization of the United Nations

Quest for novel feed resources

Harinder Makkar

Livestock Production Systems Branch Animal Production and Health Division, FAO, Rome

Outline of presentation

Livestock production

Biofuel

- 1. The quest for novel feed resources: why?
- 2. Co-products from bioethanol and biodiesel production
- 3. Unconventional feed resources
- 4. Future areas of research
- 5. Concluding remarks

Trends in use of feed concentrates & production

(Million tonnes)

	19	80	2005	2007
	Use of concentra- tes	Production of meat, milk & eggs	Use of concentra- tes	Production of meat, milk & eggs
Developed	669	457	647	487
Developing	240	172	603	537

From SOFA 2009 Livestock in the balance

Use of cereals for animal feed by region/country

World		35%
EU		53%
Brazil		44%
Oceania	a	28%
N Amer	ica	22%
India		4%
	1960	2007
China	7%	22%
Brazil	30%	44%

Meat Production

1305 million tonnes of which:

- 553 million tonnes for livestock
- 752 million tonnes for humans

IAASTD 2009 using IFPRI economic models to generate predictions

The dilemma

From where we will get feed?

- Growth in pig and poultry meat production putting great pressure on demand for grain
- Food-feed-fuel competition
- Decrease in arable land
- On-going global warming
- Increase in water shortage
- Challenge of feeding 9 billion people by 2050

Biofuels : first, second and third generation

Bioethanol production: 5-fold increase

From what bioethanol is being produced?

2010 world feedstock usage for fuel ethanol (thousand tonne)

Ethanol and co-product formation from grains

Wet-milling processes and co-products

SOURCE: Erickson et al., 2005

Historical production of ethanol co-products

U.S. ETHANOL CO-PRODUCTS OUTPUT

SOURCE: RFA, 2011

Properties of corn ethanol co-products

Animal feed/other co-products	Crude protein (%)	Fat (%)	Wheat DDGS
Corn	8.3	3.9	(36% CP)
Soy bean meal	45-50	1.4	
DDGS	30.8	11.2	
WDGS	36.0	15.0	
d-DGS ¹	34.0	2.7	
HP-DDG ²	48.6	3.4	
Corn gluten feed	23.8	3.5	Wheat (11% CP)
Corn germ	17.2	19.1	

1 De-oiled DGS 2 High-protein dry distillers' grains

For normal inclusion levels of DDGS in animal diets, the limiting EAAs are *lysine and tryptophan for maize DDGS*, and *lysine and threonine for wheat* DDGS.

Exports of US DDGS

U.S. Distillers grains exports

Shurson et al. 2012

Distillers grain use in the US

USA annual production

Composition changes (on a % DM basis) in typical beef feedlot diets before and after 2000 (USA)

Ingredient	Before 2000	Current with moderate maize price	Current with high maize price	
Cracked and/or high moisture maize	75.0	52.0	44	
Maize silage	15.0	15.0	-	
Distillers Grain	5.0	25.0	45.0 🕇	
Grass hay	5.0	5.0	5.0	
Maize stalks	-	-	3.0	
Soybean meal, 44%	3.0	-		
Urea	0.5	-	-	
Vitamin-mineral mix	1.5	3.0	3.0	

Ingredient composition changes (% as-fed basis) in typical growing swine diets in the decades before and after 2000 (US)

Ingredient	Before 2000	At current maize, soybean meal and DDGS prices			
Maize	70	53			
Soybean meal	25	11 🦊			
Canola meal	0	0			
DDGS	0	30 🕇			
Choice white grease	2	3			
Other ingredients, vitamins, minerals, amino acids	3	3			
Total	100	100			
		Shurson et al. 2012			

Distillers grains in ruminant diets

- Corn co-products:
 - primarily as a source of dietary protein in feedlot diets
 - at high levels of grain replacement, fat & fibre contribute meaningful amounts of energy).
- WDGS has a feeding value 30–40% > maize at 10–40% of diet DM.
- Distillers grains are an excellent supplement for cattle on high-forage diets (because: high energy, protein and P contents).
- Reduced rumen degradability of crude protein and increased un-degraded protein increase.
- Maximum recommended levels of DG with solubles (on DM Basis):
 - pre-weaned calves 25%
 - growing heifers 30%
 - dry cows 15%
 - Iactating dairy cows 20%

Distillers grains in pigs and poultry diets

- Growing pigs (2-3 wks after weaning): 30% of corn DDGS
- Gestating sows: 50% of DDGS.
- Lactating sows: 30 % DDGS
- With finishers: Necessary to withdraw DDGS 3 to 4 wks before slaughter (because high amount of PUFA in the corn oil -- reduce pork fat quality)

- Laying hens: DDGS (~15%)
- Broilers :>10% wheat DDGS reduce performance
 --NSP degrading enzymes needed to overcome adverse effects

Current, revised recommendations for maximum dietary inclusion rates of DDGS for various species of fish

Species	% DDGS	Comments
Catfish	Up to 30%	
Trout	Up to 15%	Without synthetic lysine and methionine supplementation
Trout	Up to 22.5%	With synthetic lysine and methionine supplementation
Salmon	Up to 10%	-
Freshwater prawns	Up to 40%	Can replace some or all of the fishmeal in the diet
Shrimp	Up to 10%	Can replace an equivalent amount of fishmeal
Tilapia	Up to 20%	Without synthetic lysine and supplementation in high protein diets (40% CP)

Safety issues

- Contamination resulting from the process: excess mycotoxins, antibiotics, pesticides, harmful bacteria (shedding of *E. coli* 0157:H7 in beeflot cattle),.
- Oil present in DDGS (maize oil has high PUFA) -- if oxidised, produce toxic aldehydes -- affecting pig health and performance, and meat quality.
- At high levels of S (0.47%) it inhibits oxidative processes in nervous tissue leading to Polioencephalomalacia.
 (Distillers grains may be high in S (0.5–1.7 percent, DM basis)
- High S may decrease bio-availability of selenium and vitamin E

Bioethanol co-products – Vinasses

- Vinasse is produced from cassava, sugar cane, sweet potato, and sweet sorghum.
- Vinasse: preparation of multi-nutrient blocks increase nutrient utilization & productivity of animals on low quality roughage diets

Multi-nutrient blocks

Growth and anticipated world expansion of biodiesel production

SOURCE: National Biodiesel Board, 2008

2010 world feedstock usage for biodiesel (thousand tonne)

Source: F.O. Licht, 2011

General biodiesel production process

Biodiesel co-products – Fatty acid distillate

- Fatty acid distillate: good source of energy.
- Fatty acids distillate reacted with calcium oxide to develop a rumen-protected fat --- an effective way to protect fatty acids against ruminal biohydrogenation

 Augment the oleic, linoleic, α-linolenic and stearic acid content in the milk of dairy cows and reduce that of palmitic acid.

Biodiesel co-products – Glycerol in ruminant diets

Glycerol: 15% of the diet (recommended inclusion)
 In dairy cow diets as an energy source (often shortly after calving)

or as a preventative for ketosis.

• In beef cattle, feed value of glycerine is greatest at \leq 10%.

Glycerine (similar to starch) has a deleterious effect on fibre digestion on high-grain diets.

Biodiesel co-products – Glycerol in pig & fish diets

- Glycerine contains energy similar to that of corn for pigs.
- If affordable, diet can contain glycerine up to:
 - Sow diets 9%
 - Weaners 6%
 - Finishers 15%

Use of glycerin in fish diet is less clear, and further research needed

Oil palm co-products

Limiting AA: Lys, met, try

Palm oil and palm kernel oil = $\sim 30\%$ of the total global production of oils & fats

Co-products	СР	ME (MJ/kg)
Palm kernel cake (PKC)	17.2	11.13

a good energy and protein sources – ruminant

Recommended levels of PKC feeding

- Growing beef cattle: 30–80%
- Goats: 20–50%
- Lactating dairy cattle: 20–50%
- Poultry and freshwater fish: < 10%</p>

Jatropha curcas kernel meal

Antinutritional and toxic factors in Jatropha meal

U*: 1 mg of meal that produced haemagglutination per ml assay medium. (Source: Makkar and Becker, 2009)

Histopathological & biochemical studies

Jatropha kernel meal in fish, pig and turkey diets

Common carp (*Cyprinus carpio* **L.) diet:** Crude protein – 38% and lipid – 10%

Rainbow trout (*Oncorhynchus mykiss*) diet: Crude protein – 45% and lipid – 24%

Nile tilapia (Oreochromis niloticus): Crude protein – 36% and lipid – 8%

White leg shrimp (*Pennaeus vannamei*): Crude protein – 35% and lipid – 9%

50% replacement of soymeal on protein basis

50% replacement of fishmeal on protein basis

Non-toxic Jatropha

Jatropha platyphylla (non-toxic)

Jatropha curcas (non-toxic)

Biodiesel co-products - Camelina sativa meal

Camelina sativa or false flax - the Brassica (Cruciferae) family

- Crude protein: 36-40% (rich in EAA including lys & meth)
- Poultry (layer and broiler) diet : 10%
- When compared to control birds fed a corn-soy diet:
 - 8-10 fold increase in total omega-3 fatty acids and ±-linolenic acid
 - Omega-6: omega-3 fatty acid ratio in eggs -- Decreased
- Two large eggs from hens fed Camelina meal: provides over 300 mg omega-3 fatty acids to the human diet.

Co-products (meal/cake) of non-edible oil-based biodiesel industry

	Crude protein	Toxic compounds
Ricinus communis	27.1-40	Ricin , ricinine (alkaloid), CB-07 (stable allergen)
Hevea brasiliensis	21.9	Cyanogenic glycosides (linemarin and lotaustralin), phytohaemagglutinin (antifertility factor)
Crambe abyssinica	46 – 58	Epi-progoitrin (thiogueoside)
Thevetia peruviana	42.8 – 47.5	Cardiac glycosides (they stin A, thevebioside, gluco- peruvoside and acetylated monoside)
Azadirachta indica	45.0 – 49.4	Azadirachtin (tetranortriterpenoid antifeedant), isoprencios and nimbidin (sulphurous compound)
Pongamia pinnata	24.2	Karanjinin (furano-flavonoid), antinutritional factors (portates, connins and protease inhibitors & glabrin)

Co-products of non-edible oil-based biodiesel industry

Azadirachta indica meal

Water washed, methanol extraction, urea and alkali treatments of *Azadirachta indica* meal - promising results in farm animals (up to 45% of concentrate for calves).

of concentrate for call

Detoxified Karanja Cake

Water-washed, alkali treated *Pongamia pinnata* meal: up to 13.5% of the concentrate in lamb diet.

Chemical composition of micro-algae

			at a	
	Protein	Carbohydrate	o lipids	Nucleic acid
				<u>.</u>
Anabaena cylindrical	43–56	25–30	4-7	Na
Aphanizomenon flos-aquae	62	23	3	Na
Scenedesmus obliqus	50–56	10-6	12–14	3–6
Scenedesmus quadricauda	47	ma	1.9	na
Chlamydomonas rheihardii	48	17	21	na
Chlorella vulgaris	51–58	12–17	14–22	4–5
Chlorella pyrenoidosa	57 👩	26	2	na
<i>Spirogyra</i> sp.	6–20	33–64	11–21	na
Dunaliella salina	57	32	6	na
Euglena gracilis	<mark>39</mark> -61	14–18	14–20	na
Prymnesium parvum	2 8–45	25–33	22–38	1–2
Tetraselmis maculate	52	15	3	na
Porphyridium cruentum	28–39	40–57	9–14	na
Spirulina platensis	46–63	8–14	4–9	2–5
Euglena gracilis	39–61	14–18	14–20	na

Amino acid profile of a few algae (g/100 g protein)

										1						
Source	lle	Leu	Val	Lys	Phe	Tyr	Met	Cys	Try	120	Ala	Arg	Asp	Glu	Gly	His
Egg	6.6	8.8	7.2	5.3	5.8	4.2	3.2	2.3	e des	5.0	Na	6.2	11.0	12.6	4.2	2.4
Soybean	5.3	7.7	5.3	6.4	5.0	3.7	1.3	P Po	1.4	4.0	5.0	7.4	1.3	19	4.5	2.6
Chlorella vulgaris	3.2	9.5	7.0	6.4	5.5	2.8	13	na	Na	5.3	9.4	6.9	9.3	13.7	6.3	2.0
Dunaliella bardawil	4.2	11.0	5.8	7.0	5.8	3.5	2.3	1.2	0.7	5.4	7.3	7.3	10.4	12.7	5.5	1.8
Spirulina platensis	6.7	9.8	7.1	4.8	Citin,	5.3	2.5	0.9	0.3	6.2	9.5	7.3	11.8	10.3	5.7	2.2
Aphanizomen on flos-aquae	2.9	5.2	3.2	7 ³⁹²	2.5	na	0.7	0.2	0.7	3.3	4.7	3.8	4.7	7.8	2.9	0.9

Other Novel Feed Resources

Winter barley

Thornless cactus

Moringa oleifera

Decreasing food-feed competition using Moringa?

Intensive cultivation of *Moringa oleifera*

Yield	Yield (tons/ha/yr)	Concentration (% DM)
DM yield	126	
Protein	21.4	17.0
Sugar	12.6	10.0
Starch	10.0	7.9

6% leaf meal i.e. 7.56 tons = 25% protein Total protein yield/ha = 1.9 tons

Soybean = 2 tons/ha & has 35% protein Total protein yield/ha = 0.7 tons

Other Novel Feed Resources

Insect as feed for poultry, pigs and fish

Black Soldier Fly or Hermetia illucens

Maggots: larvae of the housefly Musca domestica

- Protein quality is generally high, similar to other animal meat sources.
- Protein content: ca 50%
- Fat content is variable, but in general a good source of essential polyunsaturated fatty acids.
- A significant source of iron, zinc and vitamin A.

Major knowledge gaps and future research

- Need for standardisation of products from within a plant and between plants (distillers grains)
- Mass rearing of insects
- Evaluation of feeding value of biofuel co-products, insects and moringa – especially aquaculture
- Safety standards for use of co-products and of insects

FAO document: Biofuel co-products as livestock feed - Opportunities and challenges

http://www.fao.org/docrep/016/i3009e/i3009e.pdf

Concluding remarks

An array of co-products of the bio-fuel industry, unconventional resources such as Moringa, Aquatic plants and Insect are good source of protein and energy and can replace soymeal and cereals such as maize in animal diets -- easing food-feed competition"