

Effect of water availability in grazed paddock on milking frequency and milk yield

1. Dufrasne, E. Knapp, V. Robaye, L. Istasse , J.L. Hornick Nutrition Unit Animal Production Department Faculty of Veterinay Medecine Chemin de la ferme,6 B39 4000 Liège Belgium

Introduction : AMS in Belgium and grazing

- Trend with the AMS : Release of grazing
- **Grazing :** natural practice, animal health, period of recovery, reduced feeding costs, appreciated by the consumers, benefit impact on the environment .

• The project :

- prove that grazing is not inconsistant with AMS
- ✓ optimize the system
- The aims: effects of availability of water in the paddocks on milking frequency and milk yield

Materials and methods : grazing system

48 cows on 13 paddocks (1,33 ha)

Materials and methods : milking settlement in pasture

Cows were fetched twice a

day in the waiting area **THE AMS was** accessible 24h/24 1000 liter water trough : always available near the AMS

Materials and methods : experimental design

• Type of paddocks :

- Control paddocks : with an extra individual automatic bowl
- Test paddocks : no water available except in the trough near the AMS.
- Cows grazed successively 3 days in control paddocks and in test paddocks
- Experiment during 1 month : from 15 August to 15 September
- Diet: grazed grass and concentrates in the AMS

- Mean temperature during the experiment : 17°C
- Average days in milk of the cows : 211 d

- Mean distance between the AMS and the paddocks : 150 m
- Cows received 2,7 kg concentrates per day in the AMS.

Results : frequentation of the AMS

Water availability	Control	Tested	P> F
Milking frequency (n/c)	2,0	2,3	P<0,001
Refused milking (n/c)	0,44	0,77	P<0,05
Voluntary returns (n/c)	0,5	1,3	P<0,001

Voluntary returns = milkings + refused milking + milking failures – number of fetching

- When no water was available in the paddocks :
 - Milk frequency higher due to voluntary returns
 - Voluntary returns twice higher, with as result, increased frequentation

Results : production parameters

Water availability	Control	Tested	P> F
Milk yield /milking (kg/c)	8,9	7,6	P<0,001
Milking time /cow	5min 15s	4 min 52s	P<0,001
Milk yield /cow/day	17.8	18.3	NS

- Milk yield/milking higher in the control paddocks.
- No difference in milk yield

Conclusion and perspectives

- As observed in other studies, water stimulated the cows to visit the AMS
- However no differencies were observed in milk yield :
 - Water intake is influenced by the diet, the climate, the days in milk, the individuals behaviour (Melin et al., 2005)
 - The weather was fresh and the DIM high in our study
 - The experiment lasted only for one month
 - The paddocks were close the AMS
- Perspectives :
 - What are the effects of temperature variations and of dry matter content in the grass ?
 - How do the cows behave with hot weather and when the AMS is far away?
 - What is the limit of the system for production and welfare ?

Thank you for your attention

