26/08/2013: 2nd Symposium on SUSTAINABLE ANIMAL PRODUCTION IN THE TROPICS (SAPT2) and high constraint areas

Genetic evaluations for crossbred Holstein x bos indicus cattle in India Use of a test day model

INRA, 78350 Jouy-en-Josas, France, ²BAIF CRS, 412202 Uruli Kanchan, India

Content

- BAIF and INRA collaboration
- Interest of the project
- How to predict breeding values for milk yield?
- Strategies for data analyses
- The data
- Results and benefits
- Conclusions

The GENOSOUTH project

- A 2 years project (September 2012 September 2014) of international coordination
- Aiming at developing collaborations on methodological and applied aspects of genomic selection in cattle
- 4 targeted countries: India, Brazil, South Africa and Kazakhstan, with contrasted advances regarding methods for genetic evaluations and strategies of genetic improvement

Partnership in India

- BAIF = Bharatiya Agro Industries Foundation
 - An NGO founded in 1967, aiming at developping and improving livestock activities in India
 - Based on a Holstein/Jersey x zebu breeding program
 - BAIF activities (Central Research station):
 - ✓ Semen production
 - ✓ Insemination
 - ✓ Milk recording
 - Progeny testing program => Estimation of the sire breeding value
 - ✓ Research

 \Rightarrow A large database (pedigree and phenotypes) in Holstein crossbred cattle

INRA – BAIF Collaboration

- A global topic: development of genomic tools for the improvement of crossbred dairy cattle under harsh environment
- 3 sub-topics:
 - More robust and diversified genetic analyses of BAIF field performances
 - Detection of large genome areas (QTL) responsible for fat quantity in milk
 - Determination of the breed composition among crossbreds

Interest of the project

"More robust and diversified genetic analyses of BAIF field performances"

 More confidence in the breeding value estimation, with impact on breeding schemes

Observed performances (milk yield)

= **sire breeding value** + environmental effects + residuals

- Considering country specific constraints:
 - Very diverse management and production systems
 - Stressful and changing environment along the lactation (temperature, hygrometry, diseases, parasites, etc...)
 - Limited number of data:
 - ✓ Few pedigree information
 - ✓ Few animals / herd (to characterize the environment)
 - ✓ Number of observations / costs for milk recording

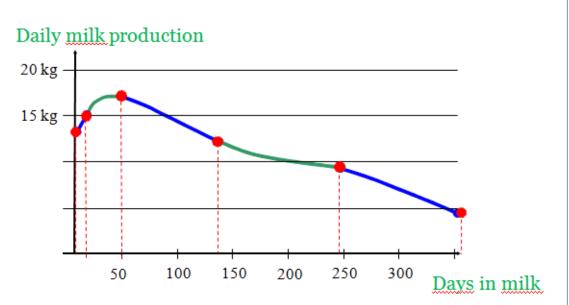
Interest of the project

"More robust and diversified genetic analyses of BAIF field performances"

 More confidence in the breeding value estimation, with impact on breeding schemes

Observed porformonoog (mille wield)

Choose the most appropriate model for milk yield prediction and optimisation of the data recording


✓ Limited number of data:

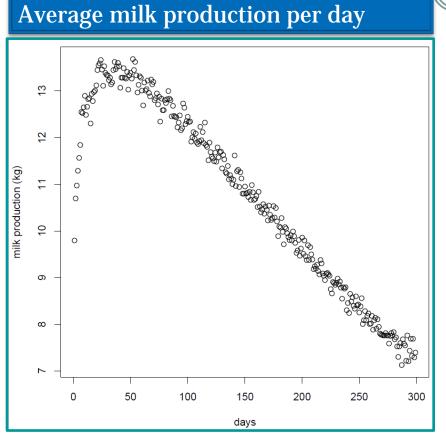
- ✓ Few pedigree information
- ✓ Few animals / herd (to characterize the environment)
- ✓ Number of observations / costs for milk recording

How to predict breeding values for milk yield?

1. Modeling the lactation curve from the discrete milk yield observations (milk recording)

2. Removing appropriately the environmental effects: *lactation model, multi-trait model, test-day model*

 \Rightarrow for one lactation, each milk record is considered as a separate observation of each individual animal



The strategy chosen for data analyses

- For flexibility: semi-parametric model
 - lactation curve partitioned into 10 lactation stages, described using splines
- <u>To account for environmental effects through the entire lactation: test</u> day model
 - model accounting for <u>repeated observation / animal</u> (accounting for time)
 - $\Rightarrow\,$ Changing h² across the lactation length : more accurate
- To account for the lack of pedigree information: a 2 step analysis
 - Estimate the environmental effects (including the permanent one / lactation rank) based on all records available
 - Estimate the breeding values ONLY based on cows with pedigree information

Data available

Mean = 10.5 kg / day Range: from 1 to 34 kg / day BAIF field data (milk recording, editing)

- (STEP 1) Performances for <u>6,675</u> crossbred cows
 - ✓ Recorded from 1994 to 2010
 - ✓ >120,000 observations
 - ✓ Up to the 6th lactation rank (mostly1st or 2nd lactation)
 - (STEP 2) Data set reduced: ~2,000 cows:
 - ✓ 38,000 adjusted performances
 - from cows with known sires
 - ✓ at least 5 recorded daughters

clotilde.patry@jouy.inra.fr

EAAP, Nantes 2013

.010

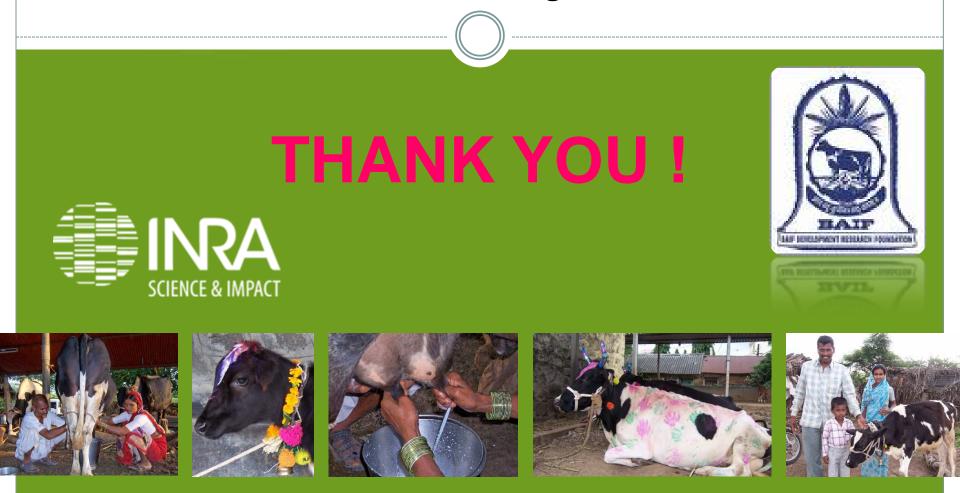
Results and benefits

- WOMBAT software (Karin Meyer)
- \Rightarrow Free of costs, friendly using
- Breeding values for 193 bulls and 2404 cows
- \Rightarrow ranking the sires of interest
- ⇒ ranking the dams to better benefit from the local genetic diversity in their crossbreeding scheme
- Genetic parameters: $h^2 = 0.12$ on the whole lactation
- \Rightarrow Low level explained by tiny herds, missing information
- ⇒ Study the impact of less records / sire or less accurate records to mimick a simplified recording scheme (Duclos et al., 2008)

EAAP, Nantes 2013

.011

Conclusions and perspectives


- India, crossbreds: limited number of data with complex factors to consider (data structure, changing environment): Specific model & tools
- Improvement of the genetic evaluation model, with perspective
 - for additional traits (e.g., fertility)
 - of including molecular data
- Improvement of the **recording** design:
 - ✓ AI technician
 - ✓ Smartphone: less data lost, centralized data base
 - ⇒ More data for R&D & Evaluations for a larger number of animals: genetic trend
- Genetic improvement is a long-term process, where recording is a key: even if genomic selection tend to speed up breeding improvement programs, it is still a slow process

EAAP, Nantes 2013

.012

26/08/2013: 2nd Symposium on SUSTAINABLE ANIMAL PRODUCTION IN THE TROPICS (SAPT2) and high constraint areas

Patry C.¹, Gokhale S.², Ducrocq V.¹,

INRA, 78350 Jouy-en-Josas, France, ²BAIF CRS, 412202 Uruli Kanchan, India