

Nutritive value of four tropical forage legume hays fed to pigs in the Democratic Republic of Congo

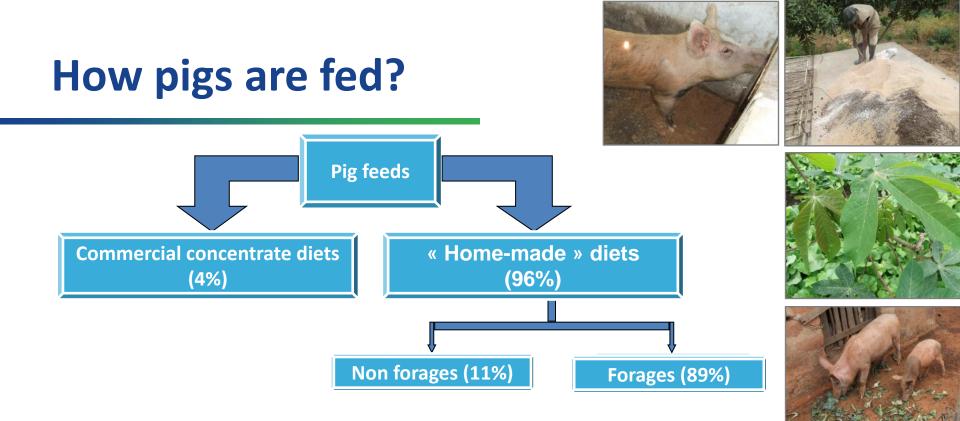
Kambashi^{1,2} B., Boudry¹ C., Picron¹ P., Kiatoko² H., Théwis¹ A., Bindelle¹ J.

¹ University of Liège, Gembloux Agro-Bio Tech, Belgium ² University of Kinshasa, Faculty of Agro-Livestock Sciences, Democratic Republic of Congo

Communication plan

- Context
- □ Aim of the research
- Research strategy
- Methods
- Results
- □ Conclusion

1. Context


□ Pigs in DRC:

- Pigs are raised by smallholders (96%)
- Semi-intensive system
- Small herd size (3 to 5 sows)
- Pig breeding is :
 - ✓ main source of cash
 - ✓ improving livelihood
 - ✓ saving strategy

□ Concentrate (> 30 ingredients)

- > Wheat bran 80%
- Palm kernel meal 73%
- > Brewers grain 50%
- > Corn 38%
- ≻ ..

For	ages	(> 40 plants)			
\succ	Manihot esc	32%			
\succ	Ipomoea ba	<i>ea batatas</i> leaves			
\succ	Leafy vegeta	ables	25%		
\succ	Eichornia cr	assipes	23%		
\succ	Psophocarp	us scandens	22%		

Forages used

- Forage plant material
 - Leaves (e.g. Musa spp.)
 - Leaves and stems (e.g. Ipomoea batatas)
 - Whole plant (e.g. *Eichornia crassipes*)

Origin

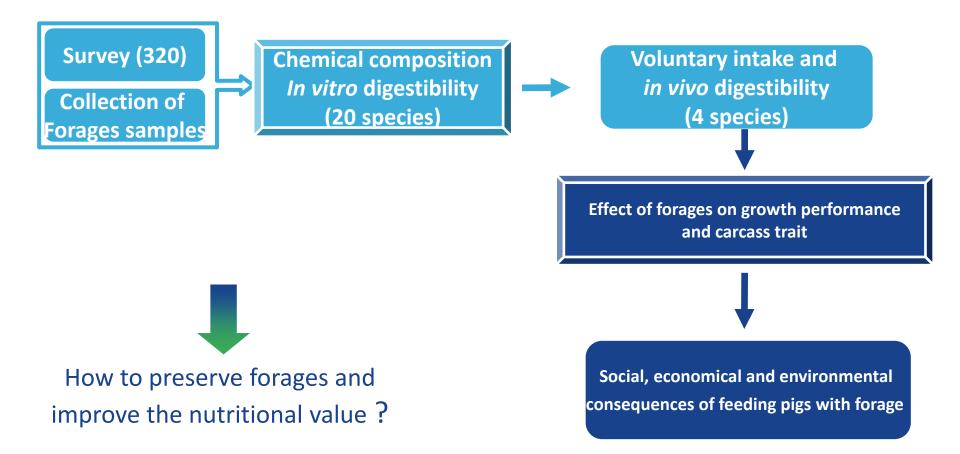
- Non-edible or unsold edible fruits and vegetables
- Weeds (in the forests, banks of rivers)
- Fields fallow (weeds or previous cropping plants)
- Aquatic plants.

Usefulness?

Advantages of forages

- Low cost
- Non-competitive with human food
- > High levels of protein, minerals and vitamins
- Integrated in crop-animal production systems
- Nutrient cycles at the farm level and improved sustainability
- Drawbacks of forages
 - Lowe digestibility owing to their fibre content
 - Anti-nutritive compounds
 - Lack of preservation methods

2. Aim of the research


- Help smallholders in better selecting the forage plants to feed their pigs
- Identification of interesting forages
 - High protein content
 - > High nutritive value

Determine the right inclusion rate of these forages in pig diets

Assess the performance of pigs fed these forages

3. Research strategy

4. Methods

Digestibility trial

Cross-over with 36 Large White barrows

Diet

- Tropical forage meals (whole-plant hays)
 - ✓ Vigna unguiculata
 - ✓ Psophocarpus scandens
 - ✓ Pueraria phaseoloides
 - Stylosanthes guianensis
- Commercial diet used as basal diet (corn-soybean meal)
- > 125 or 250g/kg DM of the basal diet were replaced by one of the tropical forage meals (TFM)

5. Results

□ Digestibility

Item	Basal diet	Psopho		Pueraria		Stylo		Vigna	
Level		125	250	125	250	125	250	125	250
Dry matter	0.76	0.71 ^a	0.65	0.70 ^a	0.610	0.70 ^a	0.65 0	0.73 ^a	0.66 b
Crude protein	0.80	0.76 ^a	0.70 cd	0.75 ^{ab}	0.68 ^d	0.76 ^{ab}	0.71 ^{cd}	0.77 ^a	0.72bc
NDF	0.54	0.49 abc	0.43 d	0.47^{bcd}	0.41 ^d	0.51 ^{ab}	0.44 ^{cd}	0.55 ^a	0.44cd
Energy	0.75	0.70 ^a	0.64 bc	0.69 ^a	0.610	0.69 ^a	0.64 bc	0.72 ^a	0.65b
Nitrogen Retained	0.58	0.49 ^{ab}	0.33 c	0.41 ^{bc}	0.31 ^c	0.50 ^a	0.44 ^{ab}	0.50 ^a	0.36 ^c
DE(Kcal/kg DM)	3303	3250 a	2810 ^b	2941 ^{ab}	2727b	3254 ^a	2830 ^b	3278 ^a	2827 ^b

- > All 4 forage species decreased linearly the total tract apparent digestibility (TTAD)
- Protein digestibility seems less affected than energy by forage inclusion
- > But N-retention was higher for *Stylosanthes guianensis* hay
- > Low digestibility for *Pueraria phaseoloides*

6. Conclusion

- Under smallholder condition, TFM can potentially be used as protein source for pig
- Due to low digestibility, the inclusion rate of TFM in the diet should not exceed 25 %.
- The use of *Pueraria phaseoloides* should be discouraged in pig
- **•** Further work is required to :
 - confirm and understand the superior N value of stylo hays
 - asses the long term impact of anti-nutrient compounds on performances

Thank you for your attention

- □ Acknowledgments for financial support
 - Wallonie Bruxelles International (Brussels, Belgium)
 - Walloon government (Namur, Belgium)

Corresponding author: bkambashi@gmail.com

64th Annual Meeting of EUROPEAN FEDERATION OF ANIMAL SCIENCE, Nantes, France, August 26rd – 30th 2013