

Supporting crop-livestock farmers in redesigning their production systems: The CLIFS approach

P.-Y. Le Gal, N. Andrieu, N.Cialdella,P. Dugué, E.Penot, C.-H.Moulin,C.Monteil, F. Douhard, J. Ryschawy

SUSTAINABLE ANIMAL PRODUCTION IN THE TROPICS (SAPT2) 64th Annual Meeting of the EAAP, Nantes, 26-30 August 2013 Designing and testing a support approach dedicated to crop-livestock farmers

✓ Focus on farm projects (short- and mid-term)

- Strategic orientations (which activities?)
- Entreprise sizing (crops, herd)
- Selection of techniques to be implemented (including technological innovations)

✓ Based on the comparison between prospective scenarios (what if?)

✓ Using a generic simulation tool called CLIFS (Crop-Livestock Farm Simulator)

- Representation of flows between crop and herd entreprises
- Structure and operation understandable by farmers
- For use by advisers in the future

A three-stage support process

CLIFS structure

Parameters

Feed characteristics Animal type and growth requirements **Crop characteristics** Input characteristics

(Same values for a range of farms at regional level)

Inputs

Lactation curve **Reproduction scheduling** Ruminant female diet Fatten ruminants **Growing ruminants** Pork and poultry Manure production Family structure **Cropping pattern** Technical practices & yields Hay - Silage Input costs Sale prices

Staple/marketed crop balance **Forage balance** Hay-Silage stocks balance Crop by-products balance Manure balance **Economic results**

(Farm data)

10,6

Production 'Ration'

Production 'Objectif'

Production permise I/j

% Ration/Objectif

I/VL/j

7,8

6,9

9,9

5,9

5.1

7,7

6.9

5,9

5.2

7,3

11,0

Four contexts with crop-livestock farmers

Morroco Irrigated dairy farms 5-60 cows over 2-30 ha Alfalfa + Silage Maize

Brazil Rainfed dairy farms 10-30 cows over 15-30 ha Pasture + Sugarcane/Silage

Madagascar Irrigated + Rainfed dairy farms 1-3 cows over 3-8ha Diversified forages and residues Conservation agriculture

Peru Irrigated dairy farms 3-65 cows over 1-60 ha Diversified forage crops

And the second sec

A Peruvian case

✓ 25 cows, 3500 l/year/com, RG/Clover/Alfalfa + Oat/Vetch + corn silage

✓ Objective: increasing milk production with the same herd size

Excess of green forage

Using the excess \rightarrow + 6500 l/year

Comparing alternative scenarios

Lessons drawn from the four experiences

✓As viewed by farmers

- Support based on their own situation
- Promotes a more holistic focus
- Scenarios realistic and tangible
- Provided perspective and reorientation of projects
- Knowledge gain (e.g. animal nutrition)
- Highlights the value of data recording and activity planning

✓As viewed by researchers

Participatory approach: interaction and involvement with farmers

Possibility to address a large range of issues in many production contexts

- Better understanding of farmers' objectives, strategies and decisionmaking processes
- Linking biotechnical knowledge with farm management knowledge

The way forward

 Extending the support approach to larger populations of farmers by transfering it to agricultural advisors

 Improving the Input / Output interfaces of the simulation tools and simplifying their use (in progress)

□ Formalizing an evaluation methodology which takes into account the various aspects of stakeholders' learning processes

 Strengthening the relationship with biotechnical researchers for using adequate technical and biophysical references

Thanks for attention

