Milk composition and energy standardization of Arabian camel's milk

R. S. Aljumaah¹, M. Ayadi¹, M. A. Alshaikh^{1*}, R. Casals² & G. Caja² ¹Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia ²Group of Ruminant Research (G2R), Universitat Autònoma de Barcelona, Bellaterra, Spain

Milk

Introduction

Milk energy content can be estimated from the caloric values of its components (Perrin, 1958).

There is not agreement on a standard fat content for camel's milk and the Gaines' standardization equation for cow's milk is used in camels: $FCM_{4\%} = 0.15 \times Fat (\%) + 0.4$.

The aim of this work was:

to study the relationship between the major milk components and to propose energy- and fat-corrected milk equations for standardizing camel's milk.

Results

Milk composition (Table 1) showed 79% inverted fat and protein contents (fat < protein) which may have been a consequence of incomplete milk letdown during milking (i.e., milk without stimulatory calf suckling).

Table1. Milk composition of dairy camels in Saudi Arabia

UAB

Material & Methods

- Animals: 180 dairy camels (Camelus dromedarius L.) of 4 breeds (Majahim, 58; Maghatir, 49; Shu'l, 39; Sufer, 34) from the Riyadh region (Saudi Arabia), milked twice daily at different stages of lactation (29 to 372 DIM).
- Milk samples: 720 samples collected by hand-milking of each udder quarter at the a.m. milking.

component	Mean ± SE	Range	Mean ± SE	Range
Fat, %	$\textbf{2.94} \pm \textbf{0.03}$	1.35 – 5.85	$\textbf{2.88} \pm \textbf{0.05}$	1.39 – 5.63
Protein, %	3.45 ± 0.01	2.45 – 4.40	$\textbf{3.44} \pm \textbf{0.02}$	2.72 – 4.31
Lactose, %	$\textbf{4.98} \pm \textbf{0.02}$	3.56 – 5.99	$\textbf{4.99} \pm \textbf{0.02}$	3.93 – 5.97
Total solids, %	12.1 ± 0.1	9.0 – 15.6	12.1 ± 0.1	9.6 - 15.6
Ashes, %	$\textbf{0.74} \pm \textbf{0.01}$	0.59 – 0.95	$\textbf{0.74} \pm \textbf{0.01}$	0.61 – 0.88
Ca, mg/L	$\textbf{9.03} \pm \textbf{0.07}$	5.01 – 13.03	$\textbf{9.25} \pm \textbf{0.13}$	5.06 - 13.00
Na, mg/L	3.57 ± 0.04	1.08 – 8.01	$\textbf{3.73} \pm \textbf{0.09}$	1.07 – 8.02
K, mg/L	$\textbf{8.72} \pm \textbf{0.11}$	3.06 – 19.41	$\textbf{9.55} \pm \textbf{0.21}$	3.33 – 19.41
Energy, kcal/kg				
Measured	n/d	n/d	626 ± 6	403 – 890
Estimated ¹	655 ± 3	447 – 928	667 ± 5	458 – 942

¹ Gross Energy (kcal/kg) according to Perrin (1958) = $95 \times Fat (\%) + 53 \times Protein (\%) + 40 \times Lactose (\%)$.

Equations for milk energy obtained from the measured (calorimeter; $r^2 = 0.73$) and estimated (Perrin; $r^2 = 0.89$) data showed divergence at the intercept (**Figure 1**) as a result of

• Analyses:

- **Major milk components** (fat, protein, lactose and total solids) by **Lacto Star** (Funke-Gerber, Labortechnik, Berlin, Germany).

- Minerals analyzed from milk ashes (550°C) by atomic absorption spectrometry (Analyst Spectro-photometer 300, Perkin-Elmer, Shelton, CT, USA).

- **Gross energy** from a freeze-dried sample subset (**n** = **225**) using an **adiabatic calorimeter** (IKA calorimeter, Janke & Hunkel, Heitersheim, Germany).

the skim milk samples which will need further research.

The proposed fat-corrected milk equation for milk standardization at 3% fat (**1 kg FCM_{3%} = 642 kcal or 153 kJ**) in dairy camels from our data differed from that of Gaines and was:

 $FCM_{3\%} = 0.197 \times Fat(\%) + 0.408$

Figure 1. Energy content of camel's milk (- -0- -, estimated; measured, -•-) according to milk fat.

• Statistical analyses:

Data analyzed for simple and multiple linear regressions by the REG procedure of SAS (SAS version 9.1, SAS Inst. Inc., Cary, NC, USA).

Conclusions

1) Camel milk standardization proposals:

- Fat corrected milk at 3% (FCM_{3%}) was recommended as the standard, being: 1 kg FCM_{3%} = 642 kcal (153 kJ)
- Standardization equation: FCM_{3%} = 0.2 × Fat (%) + 0.4

2) Inverted fat content (fat < protein) was detected in more than 2/3 camel milk samples and a divergence at the intercept (~ 95 kcal = 1% fat) as a consequence of skim milk samples.